Question

Show that the Black-Scholes equation remains invariant under the scaling $S^{\prime}=\alpha S$ where $\alpha>0$ is a constant.
A put option with strike K is written on an asset which pays out on a single, discrete yield q at time $t_{d}<T$, where T is the expiry date of the put. Explain why the spot price jumps from S to $(1-q) S$ as the dividend date is crossed, but the option price remains continuous. Denote the option price by $P(S, t ; K, T)$.
Let $P_{B S}(S, t ; K, T)$ denote the usual Black-Scholes value for a put option on an asset which pays no dividends and has strike K, expiry T. Show that

$$
P(S, t ; K, T)= \begin{cases}P_{B S}(S, t ; K, T) & \text { if } t_{d}<t<T \\ (1-q) P_{B S}(S, t ; K /(1-q), T) & \text { if } 0 \geq t<t_{d}\end{cases}
$$

Answer

Irrelevant whether they do this assuming $q=0$ or $q \neq 0$.
For $q=0, \mathrm{BS}$ is

$$
\frac{\partial V}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} V_{S S}+(r-q) S V_{S}-r V=0
$$

Now if $S^{\prime}=\alpha S$ we have

$$
\begin{gathered}
\frac{\partial}{\partial S}=\frac{\partial S^{\prime}}{\partial S} \frac{\partial}{\partial S^{\prime}}=\alpha \frac{\partial}{\partial S^{\prime}}, \\
\text { so } \mathrm{S} \frac{\partial}{\partial \mathrm{~S}}=\frac{1}{\alpha} \mathrm{~S}^{\prime} \alpha \frac{\partial}{\partial \mathrm{S}^{\prime}}=\mathrm{S}^{\prime} \frac{\partial}{\partial \mathrm{S}^{\prime}}
\end{gathered}
$$

Hence

$$
\begin{aligned}
S \frac{\partial}{\partial S}\left(S \frac{\partial}{\partial D}\right) & =S^{\prime} \frac{\partial}{\partial S^{\prime}}\left(S^{\prime} \frac{\partial}{\partial S^{\prime}}\right) \\
\Rightarrow S^{2} \frac{\partial^{2}}{\partial S^{2}}+S \frac{\partial}{\partial S} & =s^{\prime 2} \frac{\partial^{2}}{\partial S^{\prime 2}}+S^{\prime} \frac{\partial}{\partial S^{\prime}} \\
\Rightarrow S^{2} \frac{\partial^{2}}{\partial S^{2}} & =S^{\prime 2} \frac{\partial^{2}}{\partial S^{\prime 2}}
\end{aligned}
$$

Thus

$$
V_{t}+\frac{1}{2} \sigma^{2} S^{\prime 2} V_{S^{\prime} S^{\prime}}=(r-q) S^{\prime} V_{S^{\prime}}-R V=0
$$

i.e. equation is invariant.

At time t_{d} asset pays out a dividend of $q S$ (that is what a dividend yield q means), with certainty. If spot price immediately after t_{d} is not $(1-q) S$ we could arbitrage situation; eg if spot is $\hat{S}>(1-q) S$ after t_{d} - cost is $(1-q) S$, selling yields $\hat{S}>(1-q) S$.
If spot is $\bar{S}<(1-q) S$ after t_{d}, buy asset before t_{d}, collect dividend and then sell for $\bar{S} \Rightarrow$ risk free profit.
Option doesn't pay any cash dividends, so must have $V\left(t_{d}^{-}\right)=V\left(t_{d}^{+}\right)$.
Write this as

$$
\begin{aligned}
S & =S^{-} \text {at } \mathrm{t}_{\mathrm{d}}^{-} \\
S & =(1-q) S^{-} \text {at } \mathrm{t}_{\mathrm{d}}^{+} \\
V\left(S^{-}, t_{d}^{-}\right) & =V\left(S^{+}, t_{d}^{+}\right)
\end{aligned}
$$

\Rightarrow jump condition

$$
\begin{aligned}
v\left(S^{-}, t_{d}^{-}\right) & =V\left(S^{-}(1-q), t_{d}^{+}\right) \text {or just } \\
v\left(S, t_{d}^{-}\right) & =V\left(S(1-q), t_{d}^{+}\right) .
\end{aligned}
$$

for $t>t_{d}$ we have (since $q=0$ if there is only a DISCRETE dividend)

$$
\begin{gathered}
V_{t}+\frac{1}{2} \sigma^{2} S^{2} V_{S S}-r S V_{S}-r V=0 \\
V(S, T)=\max (\mathrm{K}-\mathrm{S}, 0)
\end{gathered}
$$

By definition, the solution of this problem is $P_{B S}(S, t ; K, T)$ so

$$
V=P_{B S}(S, t ; K, T) \text { for } \mathrm{t}>\mathrm{t}_{\mathrm{d}}
$$

Now write jump condition as $V\left(S, t_{d}^{-}\right)=V\left(S(1-q), t_{d}^{+}\right)$so, at t_{d}^{-}

$$
V\left(S, t_{d}^{-}\right)=P_{B S}\left((1-q) S, t_{d}^{-} ; K, T\right)
$$

Now consider payoff for $P_{B S}((1-q) S, t ; K, T)$, i.e. $P_{B S}((1-q) S, T ; K, T)$.

It is

$$
\begin{aligned}
P_{B S}((1-q) S, T ; K, T) & =\max (\mathrm{K}-(1-\mathrm{q}) \mathrm{S}, 0) \\
& =(1-q) \max \left(\frac{\mathrm{K}}{1-\mathrm{q}}-\mathrm{S}, 0\right)
\end{aligned}
$$

Hence, since BS is invariant under $S \rightarrow(1-q) S$, is linear problem for $V(S, t), t<t_{d}$ is equivalent to

$$
\begin{gathered}
V_{t}+\frac{1}{2} \sigma^{2} S^{2} V_{S S}+r S V_{S}-r V=0 \\
V(S, T)=(1-q) \max \left(\frac{\mathrm{K}}{1-\mathrm{q}}-\mathrm{S}, 0\right)
\end{gathered}
$$

i.e.

$$
V=(1-q) P_{B S}\left(S, t ; \frac{K}{1-q}, T\right)
$$

Hence the result.

