Question

Show that the Black-Scholes equation remains invariant under the scaling $S' = \alpha S$ where $\alpha > 0$ is a constant.

A put option with strike K is written on an asset which pays out on a single, discrete yield q at time $t_d < T$, where T is the expiry date of the put. Explain why the spot price jumps from S to (1-q)S as the dividend date is crossed, but the option price remains continuous. Denote the option price by P(S, t; K, T).

Let $P_{BS}(S, t; K, T)$ denote the usual Black-Scholes value for a put option on an asset which pays no dividends and has strike K, expiry T. Show that

$$P(S, t; K, T) = \begin{cases} P_{BS}(S, t; K, T) & \text{if } t_d < t < T, \\ (1 - q)P_{BS}(S, t; K/(1 - q), T) & \text{if } 0 \ge t < t_d. \end{cases}$$

Answer

Irrelevant whether they do this assuming q = 0 or $q \neq 0$. For q = 0, BS is

$$\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 V_{SS} + (r - q)SV_S - rV = 0$$

Now if $S' = \alpha S$ we have

$$\frac{\partial}{\partial S} = \frac{\partial S'}{\partial S} \frac{\partial}{\partial S'} = \alpha \frac{\partial}{\partial S'},$$
so $S \frac{\partial}{\partial S} = \frac{1}{\alpha} S' \alpha \frac{\partial}{\partial S'} = S' \frac{\partial}{\partial S'}$

Hence

$$S \frac{\partial}{\partial S} \left(S \frac{\partial}{\partial D} \right) = S' \frac{\partial}{\partial S'} \left(S' \frac{\partial}{\partial S'} \right)$$

$$\Rightarrow S^2 \frac{\partial^2}{\partial S^2} + S \frac{\partial}{\partial S} = S'^2 \frac{\partial^2}{\partial S'^2} + S' \frac{\partial}{\partial S'}$$

$$\Rightarrow S^2 \frac{\partial^2}{\partial S^2} = S'^2 \frac{\partial^2}{\partial S'^2}$$

Thus

$$V_t + \frac{1}{2}\sigma^2 S'^2 V_{S'S'} = (r - q)S' V_{S'} - RV = 0$$

i.e. equation is invariant.

At time t_d asset pays out a dividend of qS (that is what a dividend yield q means), with certainty. If spot price immediately after t_d is not (1-q)S we could arbitrage situation; eg if spot is $\hat{S} > (1-q)S$ after t_d - cost is (1-q)S, selling yields $\hat{S} > (1-q)S$.

If spot is $\overline{S} < (1-q)S$ after t_d , buy asset before t_d , collect dividend and then sell for $\overline{S} \Rightarrow$ risk free profit.

Option doesn't pay any cash dividends, so must have $V(t_d^-) = V(t_d^+)$. Write this as

$$S = S^{-} \text{ at } t_{d}^{-}$$

 $S = (1 - q)S^{-} \text{ at } t_{d}^{+}$
 $V(S^{-}, t_{d}^{-}) = V(S^{+}, t_{d}^{+})$

 \Rightarrow jump condition

$$v(S^-, t_d^-) = V(S^-(1-q), t_d^+)$$
 or just $v(S, t_d^-) = V(S(1-q), t_d^+).$

for $t > t_d$ we have (since q = 0 if there is only a DISCRETE dividend)

$$V_t + \frac{1}{2}\sigma^2 S^2 V_{SS} - rSV_S - rV = 0,$$
$$V(S, T) = \max(K - S, 0)$$

By definition, the solution of this problem is $P_{BS}(S,t;K,T)$ so

$$V = P_{BS}(S, t; K, T)$$
 for $t > t_d$

Now write jump condition as $V(S, t_d^-) = V(S(1-q), t_d^+)$ so, at t_d^-

$$V(S, t_d^-) = P_{BS}((1-q)S, t_d^-; K, T)$$

Now consider payoff for $P_{BS}((1-q)S, t; K, T)$, i.e. $P_{BS}((1-q)S, T; K, T)$. It is

$$P_{BS}((1-q)S, T; K, T) = \max(K - (1-q)S, 0)$$

= $(1-q)\max(\frac{K}{1-q} - S, 0)$

Hence, since BS is invariant under $S \to (1-q)S$, is linear problem for $V(S,t),\ t < t_d$ is equivalent to

$$V_t + \frac{1}{2}\sigma^2 S^2 V_{SS} + rSV_S - rV = 0,$$

$$V(S,T) = (1 - q)\max(\frac{K}{1 - q} - S, 0)$$

i.e.

$$V = (1 - q)P_{BS}(S, t; \frac{K}{1 - q}, T)$$

Hence the result.