Question

Consider the simple binomial model for asset price changes:

The asset price at time t = 0 os S + 0 and at time t = 1 it can either be S_2 with the probability $0 or <math>S_1 < S_2$ with probability 1 - p. Show that unless

$$S_1 < S_0 e^r < S_2$$

where r is the risk free rate, this model is arbitragabile. (You may assume that short sales are allowed.)

A derivative security, V, is written on this asset. At time t = 0 its value is V_0 . At time t = 1 its value can be either V_1 , if the underlying's price is S_1 , or V_2 if the underlying's price is S_2 .

- (a) Let V_0^p denote the present value (at time t=0) of the expected value of V at time t=1. Give a formula for V_0^p in terms of p, r, V_1 and V_2 .
- (b) Construct a risk free portfolio containing bot V and S and use an arbitrage argument to show that this leads to a "fair price" for V_0 , say V_0^{Δ} , in terms of S_0 , S_1 , S_2 , V_1 and V_2 but not p.
- (c) Construct a replicating strategy, in terms of S and cash invested at the risk-free rate r, which leads to an arbitrage free price for V_0 , say V_0^R , in terms of S_0 , S_1 , S_2 , V_1 and V_2 but not p.
- (d) Deduce from wither (b) or (c) that there is a number q, which may be regarded as a "risk neutral" probability, associated with the underlying's price, such that the "fair value" of V_0 is the present value (at t=0) of the expected value of V at time t=1.
- (e) Assuming that either $V_2 < V_1$ or $V_2 > V_1$, and that p > q, show that a trader using either of the prices $V_0^{\Delta} = V_1^T$ from (b) or (c) would necessarily be able to arbitrage a trader using the price V_0^p from (a).

Answer

If S_1 , $S_2 > S_0 e^r$ then whatever happens, risky asset grows faster than risk free rate \Rightarrow borrow S_0 now buy risky asset, payback loan next time step \Rightarrow arbitrage

If S_1 , $S_2 < S_0 e^{rst}$, short sell asset now, invest in bank, use $S_0 e^r > S_1$, S_2 to close out short sale next time step \Rightarrow arbitrage.

(a)
$$V_0^p = e^{-r}(pV_2 + (1-p)V_1)$$

(b)
$$\Pi = V - \Delta S$$
 so $\Pi_0 = V_0 - \Delta S_0$.

At time 1,
$$\Pi = \begin{cases} \Pi_1 & if S_0 \to S_1 \\ \Pi_2 & if S_0 \to S_2 \end{cases}$$

where $\Pi_1 = V_1 - \Delta S_1$, $\Pi_2 = V_2 - \Delta S_2$. Eliminate risk free by setting $\Pi_1 = \Pi_2$.

$$\Rightarrow V_1 - \Delta S_1 = V_2 - \Delta S_2$$
$$\Delta = \frac{V_2 - V_1}{S_2 - S_1}$$

This gives $\Pi_0 = e^{-r}\Pi_1 = e^{-r}\pi_2$ since Π is riskless and hence

$$V_0 = e^{-r} \pi_1$$

$$\Rightarrow V_0 = e^{-r} (V_1 - \Delta S_1) + \Delta S_0.$$

Price is "fair" in the sense that if you think true price is $\overline{V}_0 > V_0$, then soon can sell you option for \overline{V}_0 , construct risk free portfolio and close out at t=1, making $\overline{V}_0 - V_0$ risk free profit. Conversely, if someone is willing to sell for $\hat{V}_0 < V_0$, you should buy, short sell risk free portfolio and close out at t=1 making $V_0 - \hat{V}_0 > 0$ risk free profit.

(c) Let $\Pi = \phi S_0 + \psi$ where ψ is invested at risk free rate.

$$\Pi_0 = \phi S_0 + \psi,$$

$$\Pi_1 = \phi S_1 + \psi e^r,$$

$$\Pi_2 = \phi S_2 + \psi e^r.$$

setting $\Pi_1 = V_1, \, \Pi_2 = V_2, \, \text{i.e.}$

$$\phi S_1 + \psi e^r = V_1, \quad \phi S_2 + \psi e^r V_2$$

$$\Rightarrow \phi = \frac{V_2 - V_1}{S_2 - S_1}, \ \psi = e^{-r}(V_1 - \phi S_1) = e^{-r}(V - 2 - \phi S_2).$$

Then, since $\Pi = V$ at time 1, with certainty, $\Pi_0 = V_0$, hence

$$V_0 = e^{-r}(V_1 - \phi S_1) + \phi S_0$$

(note ϕ in (c) = Δ in (b))

(d) From either (b) or (c)

$$V_{0} = e^{-r}(V_{1} - \frac{V_{2} - V_{1}}{S_{2} - S_{1}}s_{1}) + \frac{V_{2} - V_{1}}{S_{2} - S_{1}}S_{0}$$

$$= \frac{1}{S_{2} - S - 1}[e^{-r}(V - 1(S_{2} - S_{1}) - (V_{2} - V_{1})S_{1}) + (V_{2} - V_{1})S_{0}]$$

$$= \frac{e^{-r}}{S_{2} - S_{1}}[V_{1}S_{2} - V_{1}S_{1} - V_{2}S_{1} + V_{1}S_{1} + V_{2}S_{0}e^{r} - V_{1}S_{0}e^{r}]$$

$$= \frac{e^{-r}}{S_{2} - S_{1}}[(S_{0}e^{r} - S_{1})V_{2} + (S_{2} - S_{0}e^{r})V_{1}]$$

$$= e^{-r}[qV_{2} + (1 - q)V_{1}]$$

$$q = \frac{S_{0}e^{r} - S_{1}}{S_{2} - S_{1}}, \quad 1 - q = \frac{S_{2} - S_{0}e^{r}}{S_{2} - S_{1}}$$

Can think of q as a probability since $S_1 < S_0 e^r$, S_2 so 0 < q < 1.

(e) Suppose $V_2 \neq V_1$. Then $V_0^p = e^{-r}[pV_2 + (1-p)V_1] \neq 0$, for if p > q, $V_0^p = V_0$

$$\Rightarrow pV_2 + (1-p)V_1 = V_2 + (1-q)V_1$$

$$\Rightarrow p - qV_2 = (p-q)V_1$$

$$\Rightarrow V_2 = V_1 \text{ if } p > q. \text{ (indeed if } p \neq q)$$

Thus $V_0^p \neq V_0$, so a trader selling at V_0^p can be arbitraged by either selling at V_0^p if $V_0^p > V_0$ and carrying out risk free strategy (b) or (c) or buying at V_0^p if $V_0^p < V_0$ and shorting the risk free strategy (b) or (c).