QUESTION

(a) Define the direct product of two groups $\left(G, e_{g}, *\right)$ and $\left.H, e_{H},.\right)$ and prove that the direct product of $\left(G, e_{g}, *\right)$ and $\left(H, e_{H},.\right)$ is isomorphic to the direct product of $\left(H, e_{H}.\right)$ and $\left(G, e_{g}, *\right)$
(b) State the internal direct products theorem. Use it to prove that:
(i) the group of symmetries of a regular hexagon is isomorphic to $S_{3} \times$ Z_{2} (you may assume the classification of groups of order 6).
(ii) The permutations (123) and (45) generate a subgroup of S_{5} isomorphic to the cyclic group Z_{6}.

ANSWER

(a) The direct product has $G \times H=\{(g, h) \mid g \in G, h \in H\}$ for its elements, $\left(e_{G}, e_{H}\right)$ for its identity element and group operation $\left(g_{1}, h_{1}\right) @\left(g_{2}, h_{2}\right)=$ $\left(g_{1} * g_{2}, h_{1} \cdot h_{2}\right)$. The function $\phi((g, h))=(h, g)$ defines a map $G \times H \longleftarrow$ $H \times G$ which is bijective. We will denote multiplication in $H \times G$ by juxtaposition.
(b) The internal direct product theorem states that if H and K are subgroups of a group G such that $H \cap K=\{e\}$ and every element $h \in H$ commutes with every element $k \in K$ then the subgroup they generate, $\langle H \cup K\rangle$, is isomorphic to the direct product $H \times K$.
(i) The subgroup H generated by the rotation of π around the center is central of order 2 . The subgroup K generated by reflections in lines joining opposite vertices is a non-abelian group of order 6 so is isomorphic to S_{3}. Since the angle between any two of these lines is $\frac{2 \pi}{3}$ this subgroup does not contain the rotation of π so $H \cap K=\{e\}$, and by centrality of $H, h k=k h$ for any $h \in H$, and any $k \in K$, So $\langle h \cup K\rangle$ is isomorphic to $S_{3} \times z_{2}$ as required.
(ii) The cycles (123) and (45) are disjoint and commute so they generate commuting cyclic subgroups H and K of orders 2,3 respectively. Clearly $H \cap K=\{e\}$ so they generate a group isomorphic to $Z_{2} \times Z_{3}$ which is isomrphic to Z_{6} since $\operatorname{hcf}(2,3)=1$.

