## QUESTION

(a) Say what it means for a subset $H$ of a group $(G, e, *)$ to be a subgroup.
(b) Giving brief reasons for your answer, say how many elements of $S_{4}$ lie in a subgroup generated by the two elements (12) and (234).
(c) Show that a non-empty subset $H$ of a group $(G, e, *)$ is a subgroup if $g * h^{-1} \in H$ for all $g, h \in H$.
(d) Say what it means for a subgroup to be normal. Show that the kernel of a homomorphism is always a normal subgroup, first using the result stated in part (c) to show that it is a subgroup.
(e) State Lagrange's theorem and use it to show that any group of prime order must be cyclic.

## ANSWER

(a) A subgroup of a group $(G, e, *)$ is a subset $H \subseteq G$ satisfying the following conditions.

S1) If $h, k \in H$, then $h * k \in H$.
S2) The identity element of $e \in G$ is also an element of $H$.
S3) If $h \in H$ then $h^{-1} \in H$.
(b) They all do, since conjugating (12) by the powers of (234) yields the transpositions (12),(13),(14) which generate all of $S_{4}$.
(c) Since $H$ is non empty we can choose an element $h \in H$. Putting $g=h$ we see that $e=g * h^{-1}=h * h^{-1}$ is an element of $H$ by the hypothesis, so $H$ satisfies axiom S2. Now given any element $h \in H$ we can put $g=e$ to get $h^{-1}=e * h^{-1}$ as an element of $H$, so $H$ satisfies axiom S3. Finally given any two elements $g, h \in h$ we see that $g, h^{-1} \in H$ so $g *\left(h^{-1}\right)^{-1} \in H$, or $g * h \in H$. So $H$ also satisfies axiom S1.
(d) A subgroup $H<G$ is said to be normal if for any element $c \in G, g H=$ $H g$. Let $\phi: G \longleftarrow H$ be a homomorphism with kernel $K=\{g \in$ $\left.G \mid \phi(g)=e_{h}\right\}$. Clearly $e_{G} \in K$, so $K$ is non-empty. Now for any $g, h \in$ $K$ we have $\phi\left(g h^{-1}\right)=\phi(g) \phi(h)^{-1}=e_{H}$ so the kernel is a subgroup. Furthermore if $k \in K, g \in G$ then $\phi(g * k)=\phi(g)=\phi(k * g)$ so both $g K$ and $K g$ are the pre-image of $\phi(g)$ in $G$ hence $g K=K g$.
(e) Lagrange's theorem: If $H$ is a subgroup of a finite group $G$ then $|H|$ divides $|G|$. If $G$ has a prime order $p$ then any subgroup of $G$ must have order 1 or $p$. Take a non-trivial element $g \in G$ and consider the subgroup it generates. It has at least 2 elements, so it must have $p$ elements, and $G=\langle g\rangle$ as required.

