QUESTION

(a) State Burnside's formula, carefully defining the terms used in the formula.
(b) Describe the elements of the rotation group of the cube, giving the order of each element, its fixed set, and describing the orbits of the faces for each rotation.
(c) Use your answers to parts (a) and (b) to find the number of distinct ways there are to label the faces of a cube with six colours, where each colour may be used more than once. (As usual, "distinct" means that the labellings can be distinguished up to a rotation of the cube, so you will need to consider the action of the rotation group of the cube on the set of all possible labellings.)

ANSWER

(a) Let G be a finite group acting on a finite set X. For each $g \in G$ let X_{g} denote the set $\{x \in X \mid g(x)=x\}$, then the number r of orbits of the action is given by $\left(\sum_{g \in G}\left|X_{g}\right|\right) /|G|$.
(b) Rotation of order 3 about a diagonal preserving two opposite vertices2 orbits each of three mutually adjacent faces.

Rotation of order 2 about a line bisecting opposite edges- 3 orbits, each fixed point yields an orbit consisting of two adjacent faces containing that fixed point, and the remaining two faces form the third orbit.
Rotation of order 4 about a line joining the midpoints of opposite faceseach face containing a fixed point is invariant so we obtain two orbits of length one. The remaining four faces split into two orbits of length 2 , each consisting of a pair of opposite faces.
The identity element- 6 orbits each of length 1 .
(c) $r=\left(\sum_{g \in G}\left|X_{g}\right|\right) / 24$. There are 8 rotations of the first type and each preserves 6^{2} labellings. There are 6 rotations of the second type and each preserves 6^{3} labellings. There are 6 rotations of the third type and each preserves 6^{3} labellings, and there are 3 rotations of the fourth type each preserving 6^{4} labellings. The identity element preserves all 6^{6}
labellings. Hence there are $\frac{(8.36+6.192+6.192+3.1296+46.656)}{12}=$ 4428 distinguishable labellings.

