QUESTION

(a) State the three axioms A1-A3 for a group $(G, e, *)$.
(b) Show that every finite group is isomorphic to a group of permutations of a finite set.
(c) (i) Carefully prove the following statement using only the axioms for a group, and saying which axiom you use at each stage of the argument: Given a group $(G, e, *)$ and elements $g, h, k \in G$, if $g * h=g * k$ then $h=k$.
(ii) Use your result from the previous part to prove the following statement: Given a group $(g, e, *)$ and an element $g \in G$ there is a unique element $k \in G$ such that $g * k=e$.
(iii) Given a group $(G, e, *)$ and elements $g, k \in G$ show that if $g * k=e$ than $k * g=e$.
(d) Let $(G, e, *)$ be a group. Show that the binary operation \cdot on G, defined by $a \cdot b=b * a$, is a group operation on G. Show also that the map $\phi: G \longleftarrow G$ defined by $g \mapsto g^{-1}$ is an isomorphism from the group $(G, e, *)$ to the group (G, e, \cdot).

ANSWER
(a) A1) For any three element $g, h, k \in G,(g * h) * k=g *(h * k)$.

A2) There is an element $e \in G$ such that for any element $g \in G$, we have $e * g=g=g * e$.
A3) For any element $g \in G$ there is an element g^{-1} (called the inverse of g) such that $g * g^{-1}=g^{-1} * g=e$.
(b) For each element $g \in G$ define a function $f_{g}: G \Longrightarrow G$ by $f_{g}(k)=g * k$. This is a bijection since its inverse is given by the function $f_{g^{-1}}$. The function $\phi: G \Longrightarrow S_{G}$ given by $g \mapsto f_{g}$ is then an isomorphism since $\phi(g * h)$ is the function $f_{g * h}$ defined by $k \mapsto(g * h) * k$, which by associativity is the same as $f_{g} \circ f_{h}(k)$, hence $\phi(g * h)=\phi(g * h)=$ $\phi(g) \circ \phi(h)$ as required.
(c) (i) $g * h=g * k \Rightarrow g^{-1} *(g * h)=g^{-1} *(g * h) \Rightarrow_{A 1}\left(g^{-1} * g\right) * h=$ $\left(g^{-1} * g\right) * k \Rightarrow_{A 1} e * h=e * k \Rightarrow_{A 2} h=k$.
(ii) By A3 there is at least one element, denoted g^{-1} such that $g * g^{-1}=$ e. Now suppose there is another denoted k. Then $g * g^{-1}=g * k \Rightarrow$ $g^{-1}=k$ by the previous result.
(iii) $g * k=e \Rightarrow k *(g * k)=k * e=_{A 2} k \Rightarrow_{A 1}(k * g) * k=k \Rightarrow$ $((k * g) * k) * k^{-1}=k * k^{-1}={ }_{A 3} e$. Now by A1 $((k * g) * k) * k^{-1}=$ $(k * g) *\left(k * k^{-1}\right)={ }_{A 3}(K * g) * e={ }_{A 2} k * g$.
Hence $k * g=e$ as required.
(d) A1) For any elements $a, b, c \in G, a .(b . c)=(b . c) * a=(c * b) * a=$ $c *(b * a)=(b * a) \cdot c=(a . b) \cdot c$.
A2) For any $a \in G$, $a . e=e * a=a=a * e=e . a$.
A3) For any $a \in G$ let a^{-1} denote the inverse of a for the binary operation $*$. Then $a . a^{-1}=a^{-1} * a=e=a * a^{-1}=a^{-1} . a$.
For any $a, b \in G \cdot \phi(a * b)=(a * b)^{-1}=b^{-1} * a^{-1}=\phi(b) * \phi(a)=\phi(a), \phi(b)$, so ϕ is a homomorphism. Sine $\phi \circ \phi(a)=a$ for any $a \in G, \phi$ is invertible and therefore an isomorphism.

