Exam Question

Topic: Double Integral

The region R in the x-y plane is specified by the conditions

$$1 \le x^2 + y^2 \le 9, \ x \ge 0.$$

Evaluate the double integral

$$\iint_R \sin\left(\frac{\pi(x^2+y^2)}{4}\right) d(x,y).$$

Solution

This integral is clearly to be done in polar coordinates

$$\int_{\theta=-\pi/2}^{\pi/2} d\theta \int_{r=1}^{3} \sin\left(\frac{\pi(x^2+y^2)}{4}\right) . r dr$$
$$= \pi \left[-\frac{2}{\pi} \cos\left(\frac{\pi r^2}{4}\right)\right]_{1}^{3} = 2\left[-\cos\left(\frac{9\pi}{4}\right) + \cos\left(\frac{\pi}{4}\right)\right] = 0.$$