Exam Question

Topic: Double Integral
The region R in the $x-y$ plane is specified by the conditions

$$
1 \leq x^{2}+y^{2} \leq 9, x \geq 0
$$

Evaluate the double integral

$$
\iint_{R} \sin \left(\frac{\pi\left(x^{2}+y^{2}\right)}{4}\right) d(x, y)
$$

Solution

This integral is clearly to be done in polar coordinates

$$
\begin{gathered}
\int_{\theta=-\pi / 2}^{\pi / 2} d \theta \int_{r=1}^{3} \sin \left(\frac{\pi\left(x^{2}+y^{2}\right)}{4}\right) \cdot r d r \\
=\pi\left[-\frac{2}{\pi} \cos \left(\frac{\pi r^{2}}{4}\right)\right]_{1}^{3}=2\left[-\cos \left(\frac{9 \pi}{4}\right)+\cos \left(\frac{\pi}{4}\right)\right]=0 .
\end{gathered}
$$

