QUESTION

The numbers used in a public-key cipher system are large, so computers are needed to cipher and decipher messages. Here is one based on small numbers that you can do by hand.
Let $p=3, q=13, e=5$.
(i) Encode the message 'HELLO' using the public-key cipher system with numbers $n=p q$ and e.
(ii) Find an integer d such that $d e \equiv 1 \bmod \phi(n)$, and hence decode your encoded message. Did you get it right?

ANSWER

(i) Using $\mathrm{A}=00, \mathrm{~B}=01, \ldots \mathrm{Z}=25$, Hello encodes as 07041111 14. As $\mathrm{pq}=39$, our blocks must all be of size 1 , so to encode we must evaluate $7^{5}, a^{5}, 11^{5}$, and $14^{5} \bmod 35$. We have
$7^{2} \equiv 49 \equiv 10 \bmod 39$, so $7^{5} \equiv 10.10 .7 \equiv 10.70 \equiv 10 .-8 \equiv-80 \equiv 37$ $\bmod 39$.
$4^{3} \equiv 64 \equiv 25 \bmod 39$, so $4^{5} \equiv 25.4 .4 \equiv 100.4 \equiv-17.4 \equiv-68 \equiv 10$ $\bmod 39$.
$11^{2} \equiv 121 \equiv 4 \bmod 39$, so $11^{5} \equiv 4.4 .11 \equiv 4.44 \equiv 4.5 \equiv 20 \bmod 39$.
$14^{2} \equiv 196 \equiv 1 \bmod 39$, so $14^{5} \equiv 1.1 .14 \equiv 14 \bmod 39$
Thus HELLO encodes as 3710202014 .
(ii) $\phi(n)=39\left(1-\frac{1}{3}\right)\left(1-\frac{1}{13}\right)=39 \cdot \frac{2}{3} \cdot \frac{12}{13}=24$, so to find d we solve $5 d \equiv 1$ $\bmod 24$. Multiplying by 5 reveals $d \equiv 5 \bmod 24$, so to decode we need to raise each number to the power $5 \bmod 39$ - the rest of the checks are left to you.

