QUESTION

Write down the formula for the value of $\phi(n)$ in terms of the prime factorisation of n and hence find
(i) all n for which $\phi(n)=\frac{4 n}{11}$.
(ii) all n for which $\phi(n)=2$.
(iii) all n for which $\phi(n)=12$.

ANSWER
$\phi(n)=n \prod_{p \mid n}\left(1-\frac{1}{p}\right)$.
(i) If $\phi(n)=\frac{4 n}{11}$, then $\prod_{p \mid n}\left(1-\frac{1}{p}\right)=\frac{4}{11}$, i.e. $\prod_{p \mid n}\left(\frac{p-1}{p}\right)=\frac{4}{11}$.

In the expression $\prod_{p \mid n}\left(\frac{p-1}{p}\right)$, the largest prime occurring in n appears in the denominator, but cannot cancel with anything in the numerator. Thus it re3mains on the denominator in the simplified expression for $\Pi_{p \mid n}\left(\frac{p-1}{p}\right)$, so we may deduce that the largest prime appearing in n is 11. Then $\prod_{p \mid n}\left(\frac{p-1}{p}\right)=\prod_{p \mid n, p<11}\left(\frac{p-1}{p}\right) \cdot \frac{10}{11}=\frac{4}{11}$. Thus $\prod_{p \mid n, p<11}\left(\frac{p-1}{p}\right)=$ $\frac{2}{5}$, and so we can similarly deduce that the next largest prime occurring is 5. Thus $\prod_{p \mid n, p<5}\left(\frac{p-1}{p}\right) \cdot \frac{4}{5}=\frac{2}{5}$, so $\prod_{p \mid n, p<5}\left(\frac{p-1}{p}\right)=\frac{1}{2}$ and we may now deduce that the only prime occurring is 2 . Thus $\phi(n)=\frac{4 n}{11}$ if and only if $n=2^{\alpha} .5^{\beta} .11^{\gamma}$ for α, β, γ all positive integers.
(ii) $\phi(n)=n \prod_{p \mid n}\left(1-\frac{1}{p}\right)=n \prod_{p \mid n}\left(\frac{p-1}{p}\right)$. Thus if $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}$, then $\phi(n)=p_{1}^{\alpha_{1}-1} p_{2}^{\alpha_{2}-1} \ldots p_{k}^{\alpha_{k}-1}\left(p_{1}-1\right)\left(p_{2}-1\right) \ldots\left(p_{k}-1\right)$. Now suppose $\phi(n)=2$. If p_{i} is a prime >2, then $p_{i} \backslash \phi(n)$, so $\alpha_{i}=1$. Moreover, $\left(p_{i}-1\right)$ divides $\phi(n)(=2)$, so p_{i} can only be 3 . Thus n takes one of the forms $2^{\alpha_{1}}$ or $2^{\alpha_{1}} .3$ or 3 . To see which integers of these forms are allowed, note
$\phi\left(2^{\alpha_{1}}\right)=2^{\alpha_{1}}\left(1-\frac{1}{2}\right)=2^{\alpha_{1}-1}=2$ only if $\alpha_{1}=2$
$\phi\left(2^{\alpha_{1}} .3\right)=\phi\left(2^{\text {alpha }} 1\right) \phi(3)=2^{\alpha_{1}-1} .3\left(1-\frac{1}{3}\right)=2^{\alpha_{1}}=2$ only if $\alpha_{1}=1$
$\phi(3)=3\left(1-\frac{1}{3}\right)=2$
Thus the possible cases are 2,4 and 6 .
(iii) If $\phi(n)=12$, we may argue in the same way as above, and deduce that if $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}$, then $\alpha_{i}=1$ for all primes occurring except those which divide 12 , namely 2 and 3 . Moreover, if p_{i} occurs, then $\left(p_{i}-1\right)$ divides 12 , so p_{i} can only be $13,7,5,3$ or 2 .

Since $\prod_{p \mid n}(p-1)$ must divide 12 , we see that the only prime that can appear together with 13 is 2 , so the possibilities involving 13 are 13 and $2^{\alpha} .13$, and a quick check shows that of these, only 13 and 26 satisfy $\phi(n)=12$.
Similarly, the only primes that can occur with 7 are 3 and 2 , so we must check $7,3^{\alpha} .7,2^{\alpha} .7$ and $2^{\alpha} .3^{\beta} .7$. We note $\phi(7)=6 \neq 12, \phi\left(3^{\alpha} .7\right)=$ $\phi\left(3^{\alpha}\right) \cdot \phi(7)=3^{\alpha-1} \cdot 2 \cdot 6$, so the only possibility is $\alpha=1$, giving 21 as a possibility. $\phi\left(2^{\alpha} .7\right)=\phi\left(2^{\alpha}\right) \phi(7)=2^{\alpha-1} .6=12$ only if $\alpha=2$, so 28 is a possibility, and $\phi\left(2^{\alpha} .3^{\beta} \cdot 7\right)=\phi\left(2^{\alpha}\right) \phi\left(3^{\beta}\right) \cdot \phi(7)=2^{\alpha-1} \cdot 3^{\beta-1} \cdot 2.6$, showing that $\beta=\alpha=1$, so that 42 is a possibility. Thus the possibilities where $7 \mid n$ are 21,28 and 42.

The case where $5 \mid n$ is quickly eliminated:-
If $n=5 m$, where $\operatorname{gcd}(5, m)=1$, then $\phi(n)=\phi(5) \phi(m)=4 \phi(m)$, so that $\phi(m)=3$, contradicting cor.5.5 which tells us that $\phi(m)$ is always even if $m>2$.
We are left with the possibilities $n=2^{\alpha}, n=3^{\alpha}$ or $n=2^{\alpha} .3^{\beta}$, and again we may check the formulae to see that the only case giving $\phi(n)=12$ is $n=2^{2} .3^{2}=36$. Thus the full list of possibilities is $13,21,26,28,36$ and 42 .

