QUESTION

For what values of n does the equation $\phi(2 n)=\phi(n)$ hold? ANSWER
If $\operatorname{gcd}(2, n)=1$ (i.e. n is odd), then as ϕ is multiplicative, $\phi(2 n)=\phi(2) \phi(n)=$ $(2-1) \phi(n)=\phi(n)$. Thus the equation holds for all odd n.
If n is even, $n=2^{r} m$ say, where $\operatorname{gcd}(2, m)=1$, then $\left.\phi(n)\right] \phi\left(2^{r}\right) \phi(m)=$ $2^{r}\left(1-\frac{1}{2}\right) \phi(m)=2^{r-1} \phi(m)$, while $\phi(2 n)=\phi\left(2^{r+1} m\right)=\phi\left(2^{r+1}\right) \phi(m)=$ $2^{r} \phi(m)$. Thus $\phi(n) \neq \phi(2 n)$ if n is even. Hence $\phi(n)=\phi(2 n)$ if and only if n is odd.

