QUESTION

Use Euler's theorem to find

- (i) the units digit of 3^{250} .
- (ii) the last two digits of 3^{250} .

ANSWER

The unit digit of an integer is given by its congruence class mod 10, and the final two digits by its congruence class mod 100.

Since 10=2.5 and $100=2^2.5^5$ we have $\phi(10)=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{5}\right)=4$ and $\phi(100)=100\left(1-\frac{1}{2}\right)\left(1-\frac{1}{5}\right)=40$. Since $\gcd(3,10)=\gcd(3,100)=1$, we may use Eulers theorem to evaluate (i) 3^{250} mod 10 and (ii) 3^{250} mod 100. (of course we could just do (ii) and deduce (i) from it- but doing both is useful for practice!)

- (i) $3^{250} \equiv (3^4)^{62} \cdot 3^2 \equiv 1^{62} \cdot 3^2 \equiv 9 \mod 10$. Thus the unit digit of 3^{250} is 9.
- (ii) $3^{250} \equiv (3^{40})^6 . 3^{10} \equiv 1^6 . 3^{10} \equiv 3^{10} \mod 100$. Now $3^4 \equiv 81 \equiv -19 \mod 100$, so $3^{10} \equiv (-19).(-19).9 \equiv 19.171 \equiv 19. -29 \equiv -551 \equiv 49 \mod 100$. Thus the last two digits of 3^{250} are 49.

[Comment: The above solution evaluates $3^{10} \mod 100$ by direct calculation. You might like to investigate the following rather quicker procedure:-

(a) Calculate $3^{10} \mod 4$. (b) Calculate $3^{10} \mod 25$. (c) Use the Chinese Remainder theorem to find a unique simultaneous solution of the congruences (a) and (b) mod 100.]