QUESTION

Use Euler's theorem to find
(i) the units digit of 3^{250}.
(ii) the last two digits of 3^{250}.

ANSWER

The unit digit of an integer is given by its congruence class mod 10 , and the final two digits by its congruence class mod 100 .
Since $10=2.5$ and $100=2^{2} .5^{5}$ we have $\phi(10)=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{5}\right)=4$ and $\phi(100)=100\left(1-\frac{1}{2}\right)\left(1-\frac{1}{5}\right)=40$. Since $\operatorname{gcd}(3,10)=\operatorname{gcd}(3,100)=1$, we may use Eulers theorem to evaluate (i) $3^{250} \bmod 10$ and (ii) $3^{250} \bmod 100$. (of course we could just do (ii) and deduce (i) from it- but doing both is useful for practice!)
(i) $3^{250} \equiv\left(3^{4}\right)^{62} .3^{2} \equiv 1^{62} .3^{2} \equiv 9 \bmod 10$. Thus the unit digit of 3^{250} is 9 .
(ii) $3^{250} \equiv\left(3^{40}\right)^{6} \cdot 3^{10} \equiv 1^{6} .3^{10} \equiv 3^{10} \bmod 100$. Now $3^{4} \equiv 81 \equiv-19 \bmod 100$, so $3^{10} \equiv(-19) .(-19) .9 \equiv 19.171 \equiv 19 .-29 \equiv-551 \equiv 49 \bmod 100$. Thus the last two digits of 3^{250} are 49.
[Comment: The above solution evaluates $3^{10} \bmod 100$ by direct calculation. You might like to investigate the following rather quicker procedure:-
(a) Calculate $3^{10} \bmod 4$. (b) Calculate $3^{10} \bmod 25$. (c) Use the Chinese Remainder theorem to find a unique simultaneous solution of the congruences (a) and (b) mod 100.]

