Question

Prove the rule that a determinant vanishes when two rows are identical.

Answer

Let my determinant be \triangle where
$\triangle=\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{1} & b_{1} & c_{1} \\ a_{3} & b_{3} & c_{3}\end{array}\right|$ by rule that interchanging 2 rows means $\triangle \rightarrow-\triangle$ and
interchanging first 2 rows
$=-\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{1} & b_{1} & c_{1} \\ a_{3} & b_{3} & c_{3}\end{array}\right|=-\triangle$
Thus
$\triangle=-\triangle$
$\Rightarrow 2 \triangle=0$
$\Rightarrow \triangle=0$
Hence 2 rows identical $\Rightarrow \triangle=0$.

