QUESTION (More difficult)
(a) Let $w=\tanh z$. Show that the points of the z-plane on the line $x=$ $a(\neq 0)$ correspond to the points of the circle with centre $(\operatorname{coth} 2 a, 0)$ and the radius cosech $2 a$ of the w-plane, Indicate in a diagram of the complex plane the way these circles vary with a.
(b) Find all solutions of $\tanh z=2$.

ANSWER
(a) $w=\tanh z=\frac{e^{z}-e^{-z}}{e^{z}+e^{-z}}$. Let $u=e^{z}$. Then the line $x=a$ in the u-plane is mapped to points of the form $e^{a}(\cos y+i \sin y)$, that is to a circle center 0 radius e^{a}, and u^{2} lies on a circle center 0 radius $e^{2} a$. Now $w=\frac{u-\frac{1}{u}}{u+\frac{1}{u}}=\frac{u^{2}-1}{u^{2}+1}$. This gives $u^{2}=\frac{1+w}{1-w}$. Thus $\left|\frac{1+w}{1-w}\right|=e^{2 a}$, Hence $|1+w|^{2}=e^{4 a}|1-w|^{2}$ and so $(1+w)(1+\bar{w})=e^{4 a}(1-w)(1-\bar{w})$. Put $w=X+i Y$. Then we find $Y^{2}+Y^{2}-2 X\left(\frac{e^{4 a}-1}{e^{4 a+1}}\right)+1=0$ which after a bit of work we see is a circle centre $(\operatorname{coth} 2 a, 0)$, radius cosech $2 a$.
(b) Go back to the equation $u^{2}=\frac{1+w}{1-w}$. Here $w=2$, so $u^{2}=-3$ and $u=\sqrt{3} i$. Thus $z=\log (\sqrt{3} i)=\log \sqrt{3}+i \frac{\pi}{2}+2 \pi n i=\frac{\log 3}{2}+i\left(\frac{\pi}{2}+2 \pi n\right)$

