Vector Fields
 Conservative Fields

Question

A source of strength 2 is placed at $(0,0,0)$ and a sink of strength 1 is placed at $(0,0,1)$. Find the velocity field for this system. Show that the velocity is vertical at all points of a certain sphere. Sketch the streamlines of the flow.
Answer
The scalar potential of the system is

$$
\phi(x, y, z)=\phi(\underline{R})=-\frac{2}{|\underline{r}|}+\frac{1}{|\underline{r}-\underline{k}|} .
$$

This gives the velocity field

$$
\begin{aligned}
\underline{v} & =\nabla \phi=\frac{2 \underline{r}}{|\underline{r}|^{3}}-\frac{\underline{r}-\underline{k}}{|\underline{r}-\underline{k}|^{3}} \\
& =\frac{2(x \underline{i}+y \underline{j}+z \underline{k})}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}-\frac{x \underline{i}+y \underline{j}+(z-1) \underline{k}}{\left(x^{2}+y^{2}+(z-1)^{2}\right)^{3 / 2}} .
\end{aligned}
$$

In order to have vertical velocity

$$
\frac{2 x}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}=\frac{x}{\left(x^{2}+y^{2}+\left(z-1^{2}\right)^{3 / 2}\right.}
$$

with a similar equation for y. Both of these equation will be satisfied at all points of the z-axis, and where

$$
\begin{aligned}
2\left(x^{2}+y^{2}+(z-1)^{2}\right)^{3 / 2} & =\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2} \\
2^{2 / 3}\left(x^{2}+y^{2}+(z-1)^{2}\right) & =x^{2}+y^{2}+z^{2} \\
x^{2}+y^{2}+(z-K)^{2} & =K^{2}-K
\end{aligned}
$$

with $K=2^{2 / 3} /\left(2^{2 / 3}-1\right)$.
The latter equation represents a sphere S, as $K^{2}-K>0$. The velocity is vertical on all point of S, as well as at all points of the z-axis.
As the source (at $(0,0,0))$ is twice as strong as the sink (at $(0,0,1)$), half of the fluid that the sources emits will go to the sink. By a process of symmetry, this will be the upper half plane $z>0$. All of the fluid emitted below $z=0$ will flow out to infinity.
There exists one point with $\underline{v}=\underline{0}$. This point $((0,0,2+\sqrt{2}))$ lies inside S. Any streamlines that emerge from the origin parallel to the $x y$-plane lead to this point. Any streamlines that emerge into $z>0$ cross S and approach the sink. Any streamlines that emerge into $z<0$ flow to infinity.
Some cross S twice, some are tangent to S and some do not intersect S at all.

