Vector Fields
 Conservative Fields

Question

Two sources of strength m are placed at $(0,0, \pm l)$. Find the velocity due to these sources, and state where the velocity is zero. Determine the velocity at the point $(x, y, 0)$ in the $x y$-plane, and state where in the $x y$-plane the speed is greatest.

Answer

For the two-source system

$$
\phi(x, y, z)=\phi(\underline{r})=-\frac{m}{|\underline{r}-l \underline{k}|}-\frac{m}{|\underline{r}+l \underline{k}|} .
$$

This gives the velocity field

$$
\begin{aligned}
\underline{v}(\underline{r}) & =\nabla \phi(\underline{r}) \\
& =\frac{m(\underline{r}-l \underline{k})}{|\underline{r}-l \underline{k}|^{3}}+\frac{m(\underline{r}+l \underline{k})}{|\underline{r}+l \underline{k}|^{3}} \\
& =\frac{m(x \underline{i}+y \underline{j}+(z-l) \underline{k})}{\left.\left[x^{2}+y^{2}+(z-l)^{2}\right]^{3 / 2}\right]}+\frac{m(x \underline{i}+y \underline{j}+(z+l) \underline{k})}{\left[x^{2}+y^{2}+(z+l)^{2}\right]^{3 / 2}} .
\end{aligned}
$$

Notice that $v_{1}=0$ if and only if $x=0$, and $v_{2}=0$ if and only if $y=0$.

$$
\underline{v}(0,0, z)=m\left(\frac{z-l}{|z-l|^{3}}+\frac{z+l}{|z+l|^{3}}\right) \underline{k}
$$

is only $\underline{0}$ if and only if $z=0$. So $\underline{v}=\underline{0}$ at the origin only.
For points in the $x y$-plane

$$
\underline{v}(x, y, 0)=\frac{2 m(x \underline{i}+y \underline{j})}{\left(x^{2}+y^{2}+l^{2}\right)^{3 / 2}}
$$

So the velocity is radially away from the origin in the plane, as is required by symmetry. The speed at $(x, y, 0)$ is given by

$$
\begin{aligned}
v(x, y, 0) & =\frac{2 m \sqrt{x^{2}+y^{2}}}{\left(x^{2}+y^{2}+l^{2}\right)^{3 / 2}} \\
& =\frac{2 m s}{\left(s^{2}+l^{2}\right)^{3 / 2}}=g(s) \\
\text { with } s & =\sqrt{x^{2}+y^{2}}
\end{aligned}
$$

For $\max g(s)$

$$
\begin{aligned}
0 & =g^{\prime}(s)=2 m \frac{\left(s^{2}+l^{2}\right)^{3 / 2}-\frac{3}{2} s\left(s^{2}+l^{2}\right)^{1 / 2} 2 s}{\left(s^{2}+l^{2}\right)^{3}} \\
& =\frac{2 m\left(l^{2}-2 s^{2}\right)^{3 / 2}}{\left(s^{2}+l^{2}\right)^{5 / 2}}
\end{aligned}
$$

So the speed in the $x y$ plane is at its greatest when it the points of the circle $x^{2}+y^{2}=l^{2} / 2$.

