Vector Fields
 Conservative Fields

Question

The function \underline{F} is given by $\underline{F}=r^{2} \cos \theta \underline{\hat{r}}+\alpha r^{\beta} \sin \theta \underline{\hat{\theta}}$. For what values of the constants α and β is \underline{F} conservative? For these values find a corresponding potential.
Answer
As $\underline{F}=r^{2} \cos \theta \underline{\hat{\hat{}}}+\alpha r^{\beta} \sin \theta \underline{\hat{\theta}}=\nabla \phi(r, \theta)$ we must have

$$
\begin{aligned}
& \frac{\partial \phi}{\partial r}=r^{2} \cos \theta, \quad \frac{1}{r} \frac{\partial \phi}{\partial \theta}=\alpha r^{\beta} \sin \theta . \\
& \Rightarrow \phi(r, \theta)=\frac{r^{3}}{3} \cos \theta+C(\theta) \\
& \text { and } C^{\prime}(\theta)-\frac{r^{3}}{3}=\frac{\partial \phi}{\partial \theta} \\
& =\alpha r^{\beta+1} \sin \theta \text {. }
\end{aligned}
$$

This can be solved for a function $C(\theta)$ which is independent of r if $\alpha=-1 / 3$ and $\beta=2$.
In this case, $C(\theta)=C$, with C being a constant. \underline{F} is conservative is the two constants α and β have the above stated values. A potential for \underline{F} is $\phi=\frac{1}{3} r^{3} \cos \theta+C$.

