Vector Fields
 Conservative Fields

Question

The function \underline{F} is given by $\underline{F}=r \sin 2 \theta \underline{\hat{r}}+r \cos 2 \theta \underline{\hat{\theta}}$. Show that \underline{F} is conservative, and find a corresponding potential.
Answer
As $\underline{F}=r \sin 2 \theta \underline{\hat{r}}+r \cos 2 \theta \underline{\hat{\theta}}=\nabla \phi(r, \theta)$ we must have

$$
\frac{\partial \phi}{\partial r}=r \sin (2 \theta), \quad \frac{1}{r} \frac{\partial \phi}{\partial \theta}=r \cos (2 \theta) .
$$

These are both satisfied if

$$
\phi(r, \theta)=\frac{1}{2} r^{2} \sin (2 \theta)+C .
$$

So \underline{F} is conservative, having ϕ as a potential.

