Vector Fields
 Conservative Fields

Question

The vector field \underline{F} is given by

$$
\underline{F}(x, y, z)=\frac{2 x}{z} \underline{i}+\frac{2 y}{z} \underline{j}-\frac{x^{2}+y^{2}}{z^{2}} \underline{k} .
$$

Show that \underline{F} is conservative, and find the potential. Describe the equipotential surfaces and find the field lines of \underline{F}.

Answer

$$
\begin{aligned}
& F_{1}=\frac{2 x}{z} \\
& F_{2}=\frac{2 y}{z} \\
& F_{3}=-\frac{x^{2}+y^{2}}{z^{2}}
\end{aligned}
$$

This gives

$$
\begin{aligned}
\frac{\partial F_{1}}{\partial y} & =0=\frac{\partial F_{2}}{\partial x} \\
\frac{\partial F_{1}}{\partial z} & =-\frac{2 x}{z^{2}}=\frac{\partial F_{3}}{\partial x} \\
\frac{\partial F_{2}}{\partial z} & =-\frac{2 y}{z^{2}}=\frac{\partial F_{3}}{\partial y} .
\end{aligned}
$$

$\Rightarrow \underline{F}$ can be conservative in \Re^{3} except on the plane $z=0$ where it is not defined. If $\underline{F}=\nabla \phi$

$$
\begin{aligned}
\Rightarrow \frac{\partial \phi}{\partial x} & =\frac{2 x}{z} \\
\frac{\partial \phi}{\partial y} & =\frac{2 y}{z} \\
\frac{\partial \phi}{\partial z} & =-\frac{x^{2}+y^{2}}{z^{2}} \\
\Rightarrow \phi(x, y, z) & =\int \frac{2 x}{z} d x \\
& =\frac{x^{2}}{z}+C_{1}(y, z)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{2 y}{z}=\frac{\partial \phi}{\partial y}=\frac{\partial C_{1}}{\partial y} \\
& \Rightarrow C_{1}(y, z)=\frac{y^{2}}{z}+C_{2}(z) \\
& \phi(x, y, z)=\frac{x^{2}+y^{2}}{z}+C_{2}(z) \\
&-\frac{x^{2}+y^{2}}{z^{2}}=\frac{\partial \phi}{\partial z}=-\frac{x^{2}+y^{2}}{z^{2}}+C_{2}^{\prime}(z) \\
& \Rightarrow C_{2}(z)=0
\end{aligned}
$$

So $\phi(x, y, z)=\frac{x^{2}+y^{2}}{z}$ is a potential for \underline{F}, and \underline{F} is conservative on \Re^{3}, except where it is not defined on $(z=0)$.
The equipotential surfaces will have the equations $\frac{x^{2}+y^{2}}{z}=C$ or $C z=$ $x^{2}+y^{2}$. Therefore the surfaces are circular paraboloids.
The field lines of \underline{F} satisfy

$$
\frac{d x}{\frac{2 x}{z}}=\frac{d y}{\frac{2 y}{z}}=\frac{d z}{-\frac{x^{2}+y^{2}}{z^{2}}}
$$

So it can be seen that $\frac{d x}{x}=\frac{d y}{y}, \Rightarrow y=A x$ for an arbitrary constant A.

$$
\begin{aligned}
\Rightarrow \frac{d x}{2 x} & =\frac{z d z}{-\left(x^{2}+y^{2}\right)} \\
& =\frac{z d z}{-x^{2}\left(1+A^{2}\right)} \\
\Rightarrow-\left(1+a^{2}\right) x d x & =2 z d z
\end{aligned}
$$

And so

$$
\frac{1+A^{2}}{2} x^{2}+z^{2}=\frac{B}{2}
$$

or

$$
x^{2}+y^{2}+2 z^{2}=B
$$

with B being a second arbitrary constant. So the field lines of \underline{F} are the ellipses in which the vertical planes containing the z-axis intersects the ellipsoids $x^{2}+y^{2}+2 z^{2}=B$. These are orthogonal to all the equipotential surfaces of \underline{F}.

