QUESTION

(b) The position of a particle P at a time t is given by

$$
\mathbf{r}=\sin (2 t) \mathbf{i}+\cos (2 t) \mathbf{j}+t \mathbf{k}
$$

(i) Find the velocity and speed of P at time t.
(ii) Find the acceleration of P at time t, and deduce that the acceleration is perpendicular to the velocity.
(iii) Determine the angle between the particle's position \mathbf{r} and the velocity at time t, and find the limiting value if this angle at large time.

ANSWER

(b) $\mathbf{r}=\sin (2 t) \mathbf{i}+\cos (2 t) \mathbf{j}+t \mathbf{k}$
(i) Velocity $=\frac{d \mathbf{r}}{d t}=2 \cos (2 t) \mathbf{i}-2 \sin (2 t) \mathbf{j}+\mathbf{k}$

$$
\begin{aligned}
& \text { Speed }=\left|\frac{d \mathbf{r}}{d t}\right|=\sqrt{(2 \cos (2 t))^{2}+(-2 \sin (2 t))^{2}+1^{2}} \\
& =\sqrt{\left(4\left(\cos ^{2}(2 t)+\sin ^{2}(2 t)\right)+1\right)}=\sqrt{5}
\end{aligned}
$$

(ii) Acceleration $=\frac{d^{2} \mathbf{r}}{d t^{2}}=-4 \sin (2 t) \mathbf{i}-4 \cos (2 t) \mathbf{j}$

$$
\begin{aligned}
& \frac{d \mathbf{r}}{d t} \cdot \frac{d^{2} \mathbf{r}}{d t^{2}}=(2 \cos (2 t),-2 \sin (2 t), 1) \cdot(-4 \sin (2 t,-4 \cos (2 t), 0) \\
& =-8 \cos (2 t) \sin (2 t)+8 \sin (2 t) \cos (2 t)+0=0
\end{aligned}
$$

Therefore the velocity is perpendicular to the acceleration.
(iii) $\cos (\theta)=\frac{\mathbf{r} \cdot \frac{d \mathbf{r}}{d t}}{|\mathbf{r}|\left|\frac{d \mathbf{r}}{d t}\right|}$
$=\frac{2 \sin (2 t) \cos (2 t)-2 \cos (2 t) \sin (2 t)+t}{\sqrt{\sin ^{2}(2 t)+\cos ^{2}(2 t)+t^{2}} \sqrt{5}}=\frac{t}{\sqrt{5\left(1+t^{2}\right)}}$
Therefore $\theta=\cos ^{-1}\left(\frac{t}{\sqrt{5\left(1+t^{2}\right)}}\right)$
As $t \rightarrow \infty, \theta \rightarrow \cos ^{-1}\left(\frac{1}{\sqrt{5}}\right)=63.4^{\circ}$

