QUESTION

(a) Components produced by a certain manufacturing process have a 4% failure rate, the distribution of failures being random. To detect the failures a screening test is devised. This test picks out 95% of the failed components, but unfortunately also picks out 2% of the components which are perfectly produced.
(i) Find the percentage of components that are picked out by the screening test.
(ii) Determine the probability that a component which is picked out by the screening test is a faulty one.

ANSWER

(a) From the given information, $p($ failure $)=p(F)=0.04$, $p($ perfect $)=p($ not fail $)=p(N F)=1-0.04=0.96$ $p($ positive test $\mid F)=0.95$, $p($ positive test $\mid N F)=0.02$
(i) p (positive test)
$=p($ positive test $\mid F) p(F)+p($ positive test $\mid N F) p(N F)$
$=(0.95)(0.04)+(0.02)(0.96)=0.0572$
i.e. the test picks out 5.72% of components.
(ii) We want

$$
\begin{aligned}
p(F \mid \text { pos. test }) & =\frac{p(F \text { and pos. test })}{p(\text { pos. test })} \\
& =\frac{p(\text { pos. test } \mid F) p(F)}{p(\text { pos. test })} \\
& =\frac{(0.95)(0.04)}{(0.0572)} \\
& =0.664
\end{aligned}
$$

