QUESTION

(i) Using partial fractions and the table of inverse Laplace transforms show that

$$
\mathcal{L}^{-1}\left\{\frac{1}{(s+2)(s+1)^{2}}\right\}=e^{-2 t}-e^{-t}+t e^{-t} .
$$

(ii) Use Laplace transforms and part (i) to find the solution of

$$
\frac{d^{2} x}{d t^{2}}+3 \frac{d x}{d t}+2 x=2 e^{-t}
$$

which satisfies the conditions $x=0$ and $\frac{d x}{d t}=0$ when $t=0$.
What is the behaviour of the solution x and $\frac{d x}{d t}$ as $t \rightarrow \infty$?

ANSWER

(i)

$$
\begin{aligned}
& \frac{1}{(s+2)(s+1)^{2}}=\frac{A}{s+2}+\frac{B}{s+1}+\frac{C}{(s+1)^{2}} \\
& =\frac{A(s+1)^{2}+B(s+1)(s+2)+C(s+2)}{(s+2)(s+1)^{2}}
\end{aligned}
$$

therefore $A(s+1)^{2}+B(s+1)(s+2)+C(s+2)=1$

$$
\begin{array}{lll}
s=-1 & 0+0+C(1)=1, & C=1 \\
s=-2 & A(-1)^{2}+0+0=1 & A=1 \\
\text { coefficient of } s^{2} & A+B=0, & B=-A=-1
\end{array}
$$

Therefore

$$
\begin{aligned}
& \mathcal{L}^{-1}\left\{\frac{1}{(s+2)(s+1)^{2}}\right\} \\
&=\mathcal{L}^{-1}\left\{\frac{1}{s+2}-\frac{1}{s+1}+\frac{1}{(s+1)^{2}}\right\}=e^{-2 t}-e^{-t}+t e^{-t} \\
& \text { (ii) } \frac{d^{2} x}{d t^{2}}+3 \frac{d x}{d t}+2 x=2 e^{-t}, \quad x(0)=\frac{d x}{d t}(0)=0
\end{aligned}
$$

Taking the Laplace transform

$$
\begin{aligned}
\left(s^{2} X-s x(0)-\frac{d x}{d t}(0)\right)+3(s X-x(0))+2 X & =\frac{2}{s+1} \\
s^{2} X+3 s X+2 X & =\frac{2}{s+1} \\
\left(s^{2}+3 s+2\right) X & =\frac{2}{s+1} \\
(s+2)(s+1) X & =\frac{2}{s+1} \\
X & =\frac{2}{(s+2)(s+1)^{2}}
\end{aligned}
$$

Hence $x(t)=\mathcal{L}^{-1}\left\{\frac{2}{(s+2)(s+1)^{2}}\right\}=2\left(e^{-2 t}-e^{-t}+t e^{-t}\right)$
i.e. $x(t)=2\left(\frac{1}{e^{2 t}}-\frac{1}{e^{t}}+\frac{t}{e^{t}}\right) \rightarrow 0$ as $t \rightarrow \infty$.

$$
\begin{aligned}
\frac{d x}{d t} & =2\left\{-2 e^{-2 t}+e^{-t}+e^{-t}-t e^{-t}\right\} \\
& =2\left\{-2 e^{-2 t}+2 e^{-t}-t e^{-t}\right\} \\
& =2\left(-\frac{2}{e^{2 t}}+\frac{2}{e^{t}}-\frac{t}{e^{t}}\right) \\
& \rightarrow 0 \text { as } t \rightarrow \infty
\end{aligned}
$$

