## QUESTION

(i) Using partial fractions and the table of inverse Laplace transforms show that

$$\mathcal{L}^{-1}\left\{\frac{1}{(s+2)(s+1)^2}\right\} = e^{-2t} - e^{-t} + te^{-t}.$$

(ii) Use Laplace transforms and part (i) to find the solution of

$$\frac{d^2x}{dt^2} + 3\frac{dx}{dt} + 2x = 2e^{-t}$$

which satisfies the conditions x = 0 and  $\frac{dx}{dt} = 0$  when t = 0.

What is the behaviour of the solution x and  $\frac{dx}{dt}$  as  $t \to \infty$ ?

## **ANSWER**

(i)

$$\frac{1}{(s+2)(s+1)^2} = \frac{A}{s+2} + \frac{B}{s+1} + \frac{C}{(s+1)^2}$$
$$= \frac{A(s+1)^2 + B(s+1)(s+2) + C(s+2)}{(s+2)(s+1)^2}$$

therefore  $A(s+1)^2 + B(s+1)(s+2) + C(s+2) = 1$ 

$$s=-1$$
  $0+0+C(1)=1,$   $C=1$   
 $s=-2$   $A(-1)^2+0+0=1$   $A=1$   
coefficient of  $s^2$   $A+B=0,$   $B=-A=-1$ 

Therefore

$$\mathcal{L}^{-1} \left\{ \frac{1}{(s+2)(s+1)^2} \right\}$$

$$= \mathcal{L}^{-1} \left\{ \frac{1}{s+2} - \frac{1}{s+1} + \frac{1}{(s+1)^2} \right\} = e^{-2t} - e^{-t} + te^{-t}$$

(ii) 
$$\frac{d^2x}{dt^2} + 3\frac{dx}{dt} + 2x = 2e^{-t}$$
,  $x(0) = \frac{dx}{dt}(0) = 0$   
Taking the Laplace transform

$$\left(s^{2}X - sx(0) - \frac{dx}{dt}(0)\right) + 3(sX - x(0)) + 2X = \frac{2}{s+1}$$

$$s^{2}X + 3sX + 2X = \frac{2}{s+1}$$

$$(s^{2} + 3s + 2)X = \frac{2}{s+1}$$

$$(s+2)(s+1)X = \frac{2}{s+1}$$

$$X = \frac{2}{(s+2)(s+1)^{2}}$$

Hence 
$$x(t) = \mathcal{L}^{-1} \left\{ \frac{2}{(s+2)(s+1)^2} \right\} = 2(e^{-2t} - e^{-t} + te^{-t})$$
  
i.e.  $x(t) = 2\left(\frac{1}{e^{2t}} - \frac{1}{e^t} + \frac{t}{e^t}\right) \to 0$  as  $t \to \infty$ .

$$\frac{dx}{dt} = 2\{-2e^{-2t} + e^{-t} + e^{-t} - te^{-t}\}\$$

$$= 2\{-2e^{-2t} + 2e^{-t} - te^{-t}\}\$$

$$= 2\left(-\frac{2}{e^{2t}} + \frac{2}{e^t} - \frac{t}{e^t}\right)\$$

$$\to 0 \text{ as } t \to \infty$$