QUESTION

(a) Find the eigenvalues of the matrix

$$
\left(\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right)
$$

and determine the corresponding eigenvectors.
(b) Writing $z=x+j y$ find the locus of the point z in the Argand diagram which satisfies the equation $\left|\frac{z-2 j}{z+1}\right|=1$.
Illustrate your result on an Argand diagram, and explain briefly how the locus is geometrically related to the points $2 j$ and -1 .

ANSWER
(a) $A=\left(\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right)$. Eigenvalues satisfy $\operatorname{det}(A-\lambda I)=0$

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\operatorname{det}\left(\begin{array}{cc}
1-\lambda & 3 \\
3 & 1-\lambda
\end{array}\right) \\
& =(1-\lambda)^{2}-3^{2} \\
& =(1-\lambda-3)(1-\lambda+3) \\
& =(-\lambda-2)(4-\lambda) \\
& =(\lambda-4)(\lambda+2) \\
& =0 \text { if } \lambda=4,-2 .
\end{aligned}
$$

$$
\lambda=4:
$$

$$
(A-4 I) \mathbf{X}=0
$$

$$
\left(\begin{array}{cc}
-3 & 3 \\
3 & -3
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0}
$$

$$
\left.\begin{array}{r}
-3 x_{1}+3 x_{2}=0 \\
3 x_{1}-3 x_{2}=0
\end{array}\right\} x_{1}=x_{2}=C
$$

Therefore the eigenvector is $C\binom{1}{1}$

$$
\lambda=-2:
$$

$$
(A-(-2) I) \mathbf{X}=0,(A+2 I) \mathbf{X}=0
$$

$$
\begin{aligned}
& \left(\begin{array}{ll}
3 & 3 \\
3 & 3
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0} \\
& \left.\begin{array}{l}
3 x_{1}+3 x_{2}=0 \\
3 x_{1}+3 x_{2}=0
\end{array}\right\} x_{2}=-x_{1}, \Rightarrow x_{1}=D, x_{2}=-D
\end{aligned}
$$

Therefore the eigenvector is $D\binom{1}{-1}$
(b) $\left|\frac{z-2 j}{z+1}\right|=1$, i.e. $\frac{|z-2 j|}{|z+1|}=1$, or $|z-2 j|=|z+1|$

Using $z=x+j y,|x+j y-2 j|=|x+j y+1|$, or $|x+j(y-2)|=|x+j y+1|$
i.e. $\left\{x^{2}+(y-2)^{2}\right\}^{\frac{1}{2}}=\left\{(x+1)^{2}+y^{2}\right\}^{\frac{1}{2}}$

Squaring both sides gives $x^{2}+(y-2)^{2}=(x+1)^{2}+y^{2}$
i.e. $x^{2}+y^{2}-4 y+4=x^{2}+2 x+1+y^{2}, 4 y=-2 x+3$
i.e. $y=-\frac{1}{2} x+\frac{3}{4}$.
$|z-2 j|=$ distance of z from $2 j,|z+1|=$ distance of z from -1 .
The distances are the same along the straight line shown.

