QUESTION

A line L_{1} passes through the two points $A(1,2,-1)$ and $B(2,-3,1)$. A second line L_{2}, which is parallel to the vector $(0,-2,1)$, passes through the point $C(2,1,-1)$.
(i) Obtain the vector equations of the lines L_{1} and L_{2} and show that they intersect at the point B.
(ii) Find a vector \mathbf{n} which is perpendicular to L_{1} and L_{2}, and hence obtain the vector equation of the plane P_{1} which contains the lines L_{1} and L_{2} and passes through B.
(iii) Obtain the vector equation of a second plane P_{2} which is parallel to P_{1} and passes through $D(-2,1,-1)$.
(iv) Find the distance between the planes P_{1} and P_{2}.

ANSWER
$A(1,2,-1), B(2,-3,1), C(2,1,-1)$
(i) $L_{1}: \overrightarrow{A B}=(2-1,-3-2,1-(-1))=(1,-5,2)$ so the equation of the line is
$\mathbf{r}=(1,2,-1)+s(1,-5,2)=(1+s, 2-5 s,-1+2 s)$
$L_{2}: \mathbf{r}=(2,1,-1)+t(0,-2,1)=(2,1-2 t,-1+t)$
The lines intersect when $(1+s, 2-5 s,-1+2 s)=(2,1-2 t,-1+t)$
i.e. $1+s=2 \Rightarrow s=1$
$2-5 s=1-2 t \Rightarrow 2 t=5 s-1=5(1)-1=4 \Rightarrow t=2$
[Check: $-1+2 s=-1+2=1 ;-1+t=-1+2=1$]
Therefore the point of intersection is $(1+1,2-5,-1+2)=(2,-3,1)$
(ii) A vector parallel to L_{1} is $(1,-5,2)$
a vector parallel to L_{2} is $(0,-2,1)$
Therefore

$$
\begin{aligned}
\mathbf{n} & =(1,-5,2) \times(0,-2,1) \\
& =(-5(1)-2(-2), 2(0)-1(1), 1(-2)-0(-5)) \\
& =(-5+4,0-1,-2-0)=(-1,-1,-1)
\end{aligned}
$$

The equation of P_{1} is $\mathbf{r} \cdot \mathbf{n}=C_{1}$.
A lies on the plane so

$$
\begin{aligned}
C_{1} & =\mathbf{a} \cdot \mathbf{n}=(1,2,-1) \cdot(-1,-1,-2) \\
& =1(-1)+2(-1)+(-1)(-2)=-1-2+2=-1
\end{aligned}
$$

Therefore $\mathbf{r} \cdot(-1,-1,-2)=-1$ or $\mathbf{r} \cdot(1,1,2)=1$.
(iii) Parallel planes have the same normal so the equation of the plane is $\mathbf{r} \cdot(-1,-1,-2)=k$
D is on the plane so

$$
\begin{aligned}
k & =(-2,1,-1) \cdot(-1,-1,-2) \\
& =-2(-1)+1(-1)-1(-2)=2-1+2=3
\end{aligned}
$$

i.e. $\mathbf{r} \cdot(-1,-1,-2)=3$ or $\mathbf{r} \cdot(1,1,2)=-3$
(iv) There are many ways to obtain this answer, for example

$$
\begin{aligned}
\text { distance } & =|\overrightarrow{D B} \cdot \hat{\mathbf{n}}| \\
& =\left|(2-(-2),-3-1,1-(-1)) \cdot \frac{(1,1,2)}{\sqrt{1^{2}+1^{2}+2^{2}}}\right| \\
& =|(4,-4,2) \cdot(1,1,2)| \frac{1}{\sqrt{6}} \\
& =\frac{4-4+4}{\sqrt{6}}=\frac{4}{\sqrt{6}}
\end{aligned}
$$

