QUESTION

(a) Using the substitution $x=y t$ find the solution of the differential equation

$$
t^{2} \frac{d x}{d t}=x^{2}+x t
$$

which satisfies the condition $x=1$ when $t=1$.
(b) Find the general solution of the second order differential equation

$$
\frac{d^{2} x}{d t^{2}}-9 x=\cos (4 t)
$$

ANSWER

(a) $t^{2} \frac{d x}{d t}=x^{2}+x t$

Making the substitution $x=y t, \frac{d x}{d t}=y+t \frac{d y}{d t}$, and substituting into the ODE gives
$t^{2}\left(y+t \frac{d y}{d t}\right)=t^{2} y^{2}+(y t) t=t^{2} y^{2}+t^{2} y$.
Hence $y+t \frac{d y}{d t}=y^{2}+y$, therefore $\frac{d y}{d t}=\frac{y^{2}}{t}$ which is a separable equation.
$\int \frac{d y}{y^{2}}=\int \frac{d t}{t}$ leads to $-\frac{1}{y}=\ln t+c \Rightarrow y=-\frac{1}{\ln t+c}$
When $t=1, y=1$ therefore $1=-\frac{1}{\ln 1+c}=-\frac{1}{c}$, so $c=-1$
Therefore $y=-\frac{1}{\ln t-1}=\frac{1}{1-\ln t}$ so $x=\frac{t}{1-\ln t}$.
(b) $\frac{d^{2} x}{d t^{2}}-9 x=\cos (4 t)$

To find the complementary function consider the equation
$\frac{d^{2} x}{d t^{2}}-9 x=0$.
This has the auxiliary equation $m^{2}-9=0, m^{2}=9, m= \pm 3$, and
therefore the complementary function is $x=A e^{3 t}+B e^{-3 t}$
To find a particular integral try $x=C \cos (4 t)+D \sin (4 t)$,

$$
\begin{aligned}
& \frac{d x}{d t}=-4 C \sin (4 t)+4 D \cos (4 t) \\
& \frac{d^{2} x}{d t^{2}}=-16 C \cos (4 t)-16 D \sin (4 t)
\end{aligned}
$$

Substituting this into the ODE gives
$-16 C \cos (4 t)-16 D \sin (4 t)-9(C \cos (4 t)+D \sin (4 t))=\cos (4 t)$
i.e. $-25 C \cos (4 t)-25 D \sin (4 t)=\cos (4 t)$

Thus $-25 C=1,-25 D=0 \rightarrow C=-\frac{1}{25}, D=0$
Hence a particular integral is $x=-\frac{1}{25} \cos (4 t)$ and the general solution
can be written $x=A e^{3 t}+B e^{-3 t}-\frac{1}{25} \cos (4 t)$

