QUESTION

If a particle P has position \mathbf{r} and its acceleration at time t is given by $\frac{d^{2} \mathbf{r}}{d t^{2}}=$ $-g \mathbf{k}$, where g is a constant, find the general form for the particle's position at time t.

ANSWER
$\frac{d^{2} \mathbf{r}}{d t^{2}}=-g \mathbf{k}, \frac{d \mathbf{r}}{d t}=-g t \mathbf{k}+\mathbf{c}_{1}, \mathbf{r}=-\frac{g t^{2}}{2} \mathbf{k}+t \mathbf{c}_{1}+\mathbf{c}_{2}$, where \mathbf{c}_{1} and \mathbf{c}_{2} are constant vectors.

