QUESTION

For each of the following matrices find the kernel and the image of the corresponding linear transformation τ.

$$
\left[\begin{array}{ccc}
-1 & -1 & 0 \\
0 & -1 & -4 \\
1 & 0 & -4
\end{array}\right] \quad\left[\begin{array}{ccc}
2 & -1 & 3 \\
-4 & 2 & -6 \\
34 & -17 & 51
\end{array}\right] \quad\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
4 & 3 & 2 & 1 \\
5 & 5 & 5 & 5 \\
3 & 1 & -1 & -3
\end{array}\right]
$$

ANSWER
The first matrix has rank 2 and nullity 1 . the vector $(4,-4,1)$ is a basis for $\operatorname{ker} \tau$, so $\operatorname{ker} \tau$ is the line $x=-y=4 z$. Choosing two independent vectors not on this line, such as $(1,0,0)$ and $(0,1,0)$, the image $\operatorname{im} \tau$ has as a basis the images of these two vectors. So im τ is spanned by $(-1,0,1)$ and $(-1,-1,0)$ which generate the plane $x-y+z=0$.
The second matrix has rank 1 and nullity 2 . The kernel is the plane $2 x-$ $y+3 z=0$. The vector $(1,0,0)$ is not on this plane, it maps to $(2,-4,34)$, so the image is the line $x=-\frac{y}{2}=\frac{z}{17}$
The third matrix has rank 2 and nullity 2 . Gaussian elimination shows that the kernel is the plane specified by $w=y+2 z$ and $x=-2 y-3 z$. Two independent vectors not in this plane are $(1,0,0,0)$ and $(0,1,0,0)$ which map to $(1,4,5,3)$ and $(2,3,5,1)$ respectively. Gaussian elimination on these shows that they span the plane specified by $w=-y+z$ and $x=-y-z$.

