Question

Define a stationary distribution of a Markov chain.
The following is a modification of the Ehrenfest model of the exchange of heat or of gas molecules between two isolated bodies.
Suppose there are two boxes, labelled A and B, and N balls labelled 1, 2, 3, \cdots, N.
Initially some of the three balls are in box A and the remainder are in box B. A trial is performed in which an integer is selected at random from $1,2,3, \cdots, N$ and the ball labelled by that integer is removed from its box; one of the boxes is selected at random and the removed ball is placed in this box. The trails are repeated indefinitely, and the selections made are independent. If X_{n} denotes the number of balls in box A after the nth trial, explain why $\left\{X_{n}\right\}_{n=0,1, \ldots}$ constitutes a Markov chain and write down its state space.
Show that the conditional probability of $(i+1)$ balls in box A after the nth trial, given there are i balls in A after the previous trial and $0 \leq i \leq n$, is

$$
\frac{N-i}{2 N}
$$

Obtain the remaining 1-step transition probabilities. Show that the stationary distribution is Binomial with parameters N and $\frac{1}{2}$.
Deduce the mean number of trials between occasions on which box A is empty.

Answer

If a Markov chain has transition matrix M, then the probability vector $\underline{\pi}$ is a stationary distribution if $\underline{\pi} M=\underline{\pi}$. If X_{n} denotes the number of balls in Box A at step n, the number of balls in Box A at step $n+1$ depends only on the location of the balls at stage n, and the next choice of box. It does not depend on hoe stage n was arrived at. The state space is $\{0,12, \cdots, N\}$. Stage n :

Box A

Box B
after the next change there will be $i+1$ balls in box A if the integer chosen corresponds to a ball in box B, which happens with probability $\frac{(N-i)}{N}$, and if box A is selected, which happens with probability $\frac{1}{2}$. So

$$
p_{i, i+1}=\frac{1}{2} \frac{N-i}{N} \quad 0 \leq i \leq N
$$

Similarly

$$
\begin{gathered}
p_{i, i-1}=\frac{1}{2} \frac{i}{N} 0 \leq i \leq N \\
p_{01}=1-p_{01}=1-\frac{1}{2}=\frac{1}{2} \text { and } p_{N N}=\frac{1}{2}
\end{gathered}
$$

For $0<i<N, p_{i i}=1-p_{i, i+1}-p_{i, i-1}=\frac{1}{2}$.
So the transition matrix is $N+1 \times N+1$)

$$
\left(\begin{array}{ccccccc}
\frac{1}{2} & \frac{1}{2} & 0 & 0 & \cdots & 0 & 0 \\
\frac{1}{2} \frac{1}{N} & \frac{1}{2} & \frac{1}{2} \frac{N-1}{N} & 0 & \cdots & & \\
0 & \frac{1}{2} \frac{2}{N} & \frac{1}{2} & \frac{1}{2} \frac{N-2}{N} & \cdots & & \\
\vdots & & & & & & \\
0 & \cdots & & & \frac{1}{2} \frac{N-1}{N} & \frac{1}{2} & \frac{1}{2} \frac{1}{N} \\
0 & \cdots & & & 0 & \frac{1}{2} & \frac{1}{2}
\end{array}\right)
$$

So if $\underline{\pi}\left(\pi_{0}, \cdots, \pi_{N}\right)$ is a stationary distribution, it satisfies $\underline{\pi} M=\underline{\pi}$, giving the following equations
$\pi_{0} \frac{1}{2}+\pi_{1} \frac{1}{2} \frac{1}{n}=\pi_{0}$
$\pi_{0} \frac{1}{2}+\pi_{1} \frac{1}{2}+\pi_{2} \frac{1}{2} \frac{2}{N}=\pi_{1}$
$\pi_{1} \frac{1}{2} \frac{N-1}{N}+\pi_{2} \frac{1}{2}+\pi_{3} \frac{1}{2} \frac{3}{N}=\pi_{2}$
\vdots
$\pi_{k-1} \frac{1}{2} \frac{N-(k-1)}{N}+\pi_{k} \frac{1}{2}+\pi_{k+1} \frac{1}{2} \frac{k+1}{N}=\pi_{k}$
$\pi_{N-1} \frac{1}{2} \frac{1}{N}+\pi_{N} \frac{1}{2}=\pi_{N}$
i.e.

$$
\begin{aligned}
\pi_{0} & =\pi_{1} \frac{1}{N} \\
\pi_{1} & =\pi_{0}+\pi_{2} \frac{2}{N} \\
\vdots & \\
\pi_{N} & =\pi_{N-1} \cdot \frac{1}{N}
\end{aligned}
$$

We need to prove by induction that

$$
\pi_{k}=\binom{N}{k} \pi_{0}
$$

True for $k=0,1$.
For $1<k<N$

$$
\begin{aligned}
\pi_{k+1} & =\frac{N}{k+1}\left(\pi_{k}-\pi_{k-1} \frac{N-k+1}{N}\right) \\
& =\frac{N}{k+1}\left(\binom{N}{k}-\binom{N}{k-1} \frac{N-k+1}{N}\right) \pi_{0}
\end{aligned}
$$

which reduces to $\binom{N}{k+1} \pi_{0}$.
Finally $\pi_{N}=\frac{1}{N} \pi_{N-1}$ fits with these results.
The Markov chain is finite irreducible, so the standard deviation is the eq.dist.
$\mu_{0}=\frac{1}{\pi_{0}}=2^{N}$

