QUESTION

Find $\int_{\text {bunny }} \frac{\cos z d z}{z^{2}(z-1)}$, (where bunny means the boundary of the bunny below taken counterclockwise.)

ANSWER
The function $\frac{\cos z d z}{z^{2}(z-1)}$ has singularities at $z=0$ and $z=1$. Only 0 lies inside bunny. So let $f(z)=\frac{\cos z}{z-1}$ and then $\frac{f(z)}{z^{2}}=\frac{\cos z d z}{z^{2}(z-1)}$, where f is analytic within bunny and on the boundary of bunny. Thus by the Cauchy integral formula

$$
\int_{\text {bunny }} \frac{\cos z d z}{z^{2}(z-1)}=\int_{\text {bunny }} \frac{f(z)}{z^{2}}=2 \pi i f^{\prime}(0)=-2 \pi i
$$

