QUESTION

Show that the functions
i) $y^{3}-3 x^{2} y$ and
ii) $\frac{y}{\left(x^{2}+y^{2}\right)}$
are harmonic in some region of the plane. In each case find a conjugate harmonic function and identify the corresponding analytic function. ANSWER
The Cauchy inequalities imply that if z_{0} is a complex number, and if M_{R} is the maximum value of $|f(z)|$ on the circle centre z_{0}, radius R, then $\left|f^{\prime \prime}\left(z_{0}\right)\right| \leq$ $2 M_{R} / R^{2}$. As f is entire, (analytic thoughout \mathbf{C}), R can be as large as we please, so that $f^{\prime \prime}(w)=0$, for all $w \in \mathbf{C}$. Thus $f^{\prime}(w)=a$, a complex constant. Therefore

$$
\int_{0}^{z} f^{\prime}(w) d w=a z+b
$$

(b a complex constant) and hence

$$
f(z)=a z+k
$$

(k a complex constant). As $|f(z)| \leq A|z|$, by putting $z=0$, we get $f(0)=0$, so that $k=0$ and $f(z)=a z$.

