QUESTION

If $f(z)=u(x, y)+i v(x, y)$ and $\overline{f(z)}=u(x, y)-i v(x, y)$ are both analytic in a region D show that f is constant in D. (Hint: Cauchy-Riemann equations). Also show that if f is analytic and $|f|$ is constant then f is constant.
ANSWER
(i) Either do this directly using the Cauchy-Riemann equations, or note that $(x+i y)^{3}=x^{3}-3 x y^{2}+i\left(3 x^{2} y-y^{3}\right)$. Thus $y^{3}-3 x y$ is the imaginary part of $-z^{3}$ and so $y^{3}-3 x^{2} y$ is harmonic, its conjugate harmonic function is $3 x y^{2}-x^{3}$ and the corresponding analytic function is $-z^{3}$. (ii) $1 / z=$ $1 /(x+i y)=(x-i y) /\left(x^{2}+y^{2}\right)$. Thus $y /\left(x^{2}+y^{2}\right)$ is the imaginary part of $-1 / z$ and is thus harmonic in any region not containing the origin. Thus $y /\left(x^{2}+y^{2}\right)$ is the imaginary part of $-1 / z$, so that $y /\left(x^{2}+y^{2}\right)$ is harmonic, its conjugate harmonic function is $-x /\left(x^{2}+y^{2}\right)$ and $-1 / z$ is the corresponding analytic function.

