Multiple Integration Iteration of Double Integrals

Question

Find the volume for the solid defined by
The space inside the cylinder $x^{2}+2 y^{2}=8$ that is over the plane $z=y-4$ and under the plane $z=8-x$.
Answer
The part of $z=8-x$ that lies inside $x^{2}=2 y^{2}=8$ lies over $z=0$. The part of $z=y-4$ that lies inside the cylinder lies under $z=0$.

$$
\begin{aligned}
\Rightarrow V & =\iint_{x^{2}+2 y^{2} \leq 8}(8-x-(y-4)) d A \\
& =\iint_{x^{2}+2 y^{2} \leq 8} 12 d A \\
& =12 \times\left(\text { area of } \frac{x^{2}}{8}+\frac{y^{2}}{4}=1\right) \\
& =12 \times \pi(2 \sqrt{2})(2) \\
& =48 \sqrt{2} \pi \text { cu. units }
\end{aligned}
$$

