Question

Describe what is meant by a compound Poisson process. Show that if $A(z)$ is the probability generating function for the number of events occurring at each point of the process, then the random variable $X(t)$ - the total number of events occurring in a time interval of length t - has probability generating function

$$
G_{t}(z)=\exp (\lambda t A(z)-\lambda t)
$$

Points in time occur in a Poisson process with rate λ. At each point two fair coins are tossed. Find the probability generating function for the total number of heads occurring in a time interval of length t. Find the mean number of heads occurring in a time interval of length t.
Let W denote the waiting time before any heads occur.
Show that

$$
P(W>t)=\exp \left(\frac{-3 \lambda t}{4}\right)
$$

Answer

Suppose that
(i) points occur in a Poisson process $\{N(t): t \geq 0$ with rate λ
(ii) at the ith point Y_{i} events occur, where Y_{1}, Y_{2}, \cdots are i.i.d random variables.
(iii) Y_{i} and $\{N(t): t \geq 0\}$ are independent.

The total number of events occurring in a time interval of length t is

$$
X(t)=\sum_{i=1}^{N(t)} Y_{i}
$$

$\{X(t): t \geq 0\}$ is said to be a compound Poisson process.
Let the p.g.f of each Y_{i} be $A(z)$. Then $X(t)$ has p.g.f

$$
\begin{aligned}
\sum_{j=0}^{\infty} z^{j} P(X(t)=j)= & \sum_{j=0}^{\infty} \sum_{n=0}^{\infty} x^{j} P(X(t)=j \mid N(t)=n) P(N(t)=n) \\
& \sum_{j=0}^{\infty} \sum_{n=0}^{\infty} z^{j} P\left(Y_{1}+\cdots+Y_{n}=j\right) \frac{(\lambda t)^{n} e^{-\lambda t}}{n!}
\end{aligned}
$$

$$
\begin{aligned}
&= \sum_{j=0}^{\infty}\left\{\sum_{n=0}^{\infty} z^{j} P\left(Y_{1}+\cdots+Y_{n}=j\right)\right\} \frac{(\lambda t)^{n} e^{-\lambda t}}{n!} \\
&= \sum_{n=0}^{\infty}[A(z)]^{n} \frac{(\lambda t)^{n} e^{-\lambda t}}{n!} \\
& \text { since the } Y_{i} \text { are independent } \\
&=\exp (\lambda t A(z)-\lambda t)
\end{aligned}
$$

Now $A(x)=\frac{1}{4}+\frac{1}{2} x+\frac{1}{4} z^{2}$ in this case.
So the number of heads in a time interval of length t has p.g.f.

$$
\begin{aligned}
G_{t}(z) & =\exp \left(\lambda t\left(\frac{1}{4}+\frac{1}{2} z+\frac{1}{4} z^{2}\right)-\lambda t\right) \\
& =\exp \left(\lambda t\left(\frac{1}{4} z^{2}+\frac{1}{2} z-\frac{3}{4}\right)\right)
\end{aligned}
$$

The mean number of heads is $G^{\prime}(1)$.

$$
G^{\prime}(z)=\exp \left(\lambda t\left(\frac{1}{4} z^{2}+\frac{1}{2} z-\frac{3}{4}\right)\right) \cdot \lambda t\left(\frac{1}{2} z+\frac{1}{2}\right)
$$

so $G^{\prime}(1)=e^{0} \lambda t=\lambda t$
Let W be the waiting time before a head is recorded.

EITHER

$P(W>t)=\mathrm{P}($ no events in compound process in $(0, t])$

$$
=G_{t}(0)=\exp \left(-\frac{3}{4} \lambda t\right)
$$

OR

$$
\begin{aligned}
\hline P(W>t)= & \mathrm{P}(\text { no events in Poisson process }) \\
& +\sum_{n=1}^{\infty}(n \text { events and } 2 \text { tails at each event }) \\
= & e^{-\lambda t}+\sum_{n=1}^{\infty}\left(\frac{1}{4}\right)^{n} \frac{(\lambda t)^{n} e^{-\lambda t}}{n!} \\
= & e^{-\lambda t}+e^{-\lambda t}\left[e^{\lambda \frac{t}{4}}-1\right] \\
= & e^{-\frac{3 \lambda t}{4}}
\end{aligned}
$$

