
Question
Describe what is meant by a compound Poisson process. Show that if A(z)
is the probability generating function for the number of events occurring at
each point of the process, then the random variable X(t) - the total number
of events occurring in a time interval of length t - has probability generating
function

Gt(z) = exp(λtA(z)− λt)

Points in time occur in a Poisson process with rate λ. At each point two
fair coins are tossed. Find the probability generating function for the total
number of heads occurring in a time interval of length t. Find the mean
number of heads occurring in a time interval of length t.
Let W denote the waiting time before any heads occur.
Show that

P (W > t) = exp

(
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Answer
Suppose that

(i) points occur in a Poisson process {N(t) : t ≥ 0 with rate λ

(ii) at the ith point Yi events occur, where Y1, Y2, · · · are i.i.d random vari-
ables.

(iii) Yi and {N(t) : t ≥ 0} are independent.

The total number of events occurring in a time interval of length t is

X(t) =
N(t)
∑

i=1

Yi

{X(t) : t ≥ 0} is said to be a compound Poisson process.

Let the p.g.f of each Yi be A(z). Then X(t) has p.g.f
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since the Yi are independent

= exp(λtA(z)− λt)
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z2 in this case.

So the number of heads in a time interval of length t has p.g.f.
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The mean number of heads is G′(1).
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so G′(1) = e0λt = λt

Let W be the waiting time before a head is recorded.

EITHER
P (W > t) = P(no events in compound process in (0, t])

= Gt(0) = exp
(
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OR
P (W > t) = P(no events in Poisson process)
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