NOTE ANSWER IS NOT COMPLETE!!!!!

Question

Laplace's equation can be written in polar coordinates as

$$
\nabla^{2} \phi=\frac{\partial^{2} \phi}{\partial r^{2}}+\frac{1}{r} \frac{\partial \phi}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} \phi}{\partial \theta^{2}}=0
$$

Suppose $\nabla^{2} \phi=0$ inside the unit semi-circle $0<r \leq 1,0 \leq \theta \leq \pi$. Deduce that a possible solution can take the form $\phi=A+B \theta$ where A, B are constants. Confirm that this is indeed the unique solution when the following boundary conditions are specified and find A and B.

$$
\frac{\partial \phi}{\partial r}=0 \text { when } \mathrm{r}=1 ; \quad \phi=+1 \text { when } \theta=0 ; \quad \phi=-1 \text { when } \theta=\pi
$$

Show that $\phi=\operatorname{Re}(A-i B \log z), z=x+i y=r \exp (i \theta)$. Now use the method of conformal transformations to solve the following boundary-value problems, where $\nabla^{2} \phi=0$ in the unit semi-circle $0<r \leq 1,0 \leq \theta \leq \pi$.
(a) If the boundary conditions are now:

$$
\begin{aligned}
& \qquad \phi=-1 \text { when } \mathrm{r}=1,0 \leq \theta<\frac{\pi}{2} ; \quad \phi=+1 \text { when } \mathrm{r}=1, \frac{\pi}{2} \leq \theta<\pi \\
& \qquad \frac{\partial \phi}{\partial y}=0 \text { when } \theta=0 \text { or } \theta=\pi, 0 \leq \mathrm{r} \leq 1 \\
& \text { In particular, show that on } \theta=\pi, \quad \phi=1-\frac{2}{\pi} \arctan \left(\frac{1-r^{2}}{2 r}\right) . \\
& \text { (Hint: consider the transformation } w=\frac{(z-i)}{(i z-1)} . \text {. }
\end{aligned}
$$

(b) If the boundary conditions are now

$$
\begin{aligned}
& \frac{\partial \phi}{\partial r}=0 \text { when } \mathrm{r}=1,0 \leq \theta<\pi \\
& \phi=-1 \text { when } \theta=\pi, 0 \leq \mathrm{r} \leq 1 \\
& \phi=-1 \text { when } \theta=0,0 \leq \mathrm{r}<\frac{1}{2} \\
& \phi=+1 \text { when } \theta=0, \frac{1}{2} \leq \mathrm{r} \leq 1
\end{aligned}
$$

In particular, show that on $r=1$, for a suitably chosen range of arctan,

$$
\phi=1-\frac{2}{\pi} \arctan \left(\frac{2 \sin \theta}{5 \cos \theta-4}\right)
$$

(Hint: consider the transformation $w=\frac{(2 z-1)}{(2-z)}$.)

Answer

PICTURE

Check: $\phi(r, \theta)=A+B \theta \Rightarrow \phi_{r}=\phi_{r r}=0, \phi_{\theta}=B, \phi_{\theta \theta}=0$
Therefore $\nabla^{2} \phi(x, y)=\phi_{r r}+\frac{1}{r} \phi_{r}+\frac{1}{r^{2}} \phi_{\theta \theta}=0+\frac{0}{r}+\frac{0}{r^{2}}=0, r \neq 0 \sqrt{ } \sqrt{ }$
Now satisfy boundary conditions
$\phi_{r}=0$ at $r=1 \Rightarrow \frac{\partial_{r}}{\partial r}(a+B \theta)=0$
(which it does everywhere so boundary condition is satisfied)
$\phi_{r}=+1$ when $\theta=0 \Rightarrow B \times 0+A$

$$
\Rightarrow \quad A=1
$$

$\phi=-1$ when $\theta=\pi \quad \Rightarrow \quad B \pi+A=-1$

$$
\Rightarrow \quad B=-\frac{2}{\pi}
$$

so $\phi(r, \theta)=1-\frac{2}{\pi} \theta$ satisfies $\nabla^{2} \phi=0$ in P
Consider $z=x+i y$
$\Phi(z)=A-i B \log z, \quad A, B \in \mathbf{R}$
$\operatorname{Re}[\Phi(z)]=\operatorname{Re}(A+i B \log |z|+B \theta)=A+B \theta=\phi(r, \theta)$ as required.

(a) PICTURE

consider $w=\left(\frac{z-i}{i z-1}\right)$:
$y=00 \leq x \leq 1$:

$$
\begin{aligned}
w & =\frac{x-i}{i x-1} \\
& =\frac{(x-i)}{x^{2}+1}(-1-i x) \\
& =\frac{-x-i x^{2}+i-x}{x^{2}+1} \\
& =\frac{-2 x-i\left(x^{2}-1\right)}{x^{2}+1}
\end{aligned}
$$

$$
(i z-1)=\left(\frac{z-i}{w}\right)
$$

$$
\left(i-\frac{1}{w}\right)^{2}=1-\frac{i}{w}
$$

$$
z=\frac{w-i}{(i w-1)}
$$

$$
|i w-1|=|w-i|
$$

$$
|w+i|=|w-i|
$$

$z=R e^{i \theta}$
$w=\left(\frac{R e^{i \theta}-i}{i R^{i \theta}-1}\right): w=\left(\frac{R-i}{i R-1}\right)=\frac{R-i}{R+i} \frac{1}{i}$ where $\theta=0$
$\frac{1}{i} \frac{(z-i)}{(z+i)}=\frac{1}{i} \frac{(z-i)^{2}}{|z|^{2}+1}=\frac{1}{i} \frac{1}{i} \frac{z^{2}-2 i z-1}{\left(|z|^{2}+1\right)}$
$\frac{\left(R e^{i \theta}-i\right)}{i\left(R e^{i \theta}+i\right)}=\frac{1}{i} \frac{\left(R e^{2 i \theta}-2 i R e^{i \theta}-1\right)}{\left(R^{2}+1\right)}$

$$
\begin{aligned}
w(0) & =+i \\
w(i) & =0 \\
w(1) & =\frac{1-i}{-(1+i)}=-1 \\
w(-1) & =\frac{-(1+i)}{-(1+i)}=+1
\end{aligned}
$$

$$
\begin{aligned}
w & =\frac{(x-i)}{-1+i x} \\
& =\frac{(x-i)(-1-i x)}{1+x^{2}} \\
& =-x-i x^{2}+i-x \\
& =\frac{-2 x+i\left(1-x^{2}\right)}{1+x^{2}}
\end{aligned}
$$

