Question

Show that the transformation

$$
w=\frac{i-z}{i+z}
$$

maps the upper half plane $\operatorname{Im}(z)>0$ into the interior of the unit circle, centred on the origin of the w-plane. Hence, solve Laplace's equation $\nabla^{2} F=$ 0 inside the circle $w=\exp (i \theta)$, when the values of F on the circumference are

$$
F= \begin{cases}1, & 0<\theta<\pi \\ 0, & \pi<\theta<2 \pi\end{cases}
$$

Answer

$w=\frac{i-z}{i+z}$
Consider the inverse mapping $w \rightarrow z$.
If $|w|=1$, i.e., the unit circle, then

$$
|w|=\left|\frac{i-z}{i+z}\right|=1
$$

i.e., $|i-z|=|i+z|$

This is the locus of points z which are equidistant from i and $-i$, i.e., the line $\operatorname{Im}(z)=0$.
(w)

So the map $z \rightarrow w$ must take $\operatorname{Im}(z)=0$ onto $|w|=1$ as required.
What about interior points? Pick one z-value $z=+i$ say $w(i)=0$ i.e., $|w(i)|<1$
Therefore upper $\operatorname{Im}(z 0 \geq 0 \longrightarrow|w| \leq 1$

In particular, consider $z=x+i y$ with $y=0, x>0$ $w(0)=1, w(+\infty)=-1$
$w(1)=\frac{i-1}{i+1}=\frac{-(1-i)(1-i)}{(1+i)(1-i)}=-\frac{1}{2}(-2 i)=i$
Now for $y=0, x<0$
$w(0)=1, w(-\infty)=-1$
$w(-1)=\frac{i+1}{i-1}=-i$
Thus
PICTURE

Thus if $\phi_{(x, y)}=1$ on $O A B, F_{(u, v)}=1$ on $0^{\prime} A^{\prime} B^{\prime}$
and if $\phi(x, y)=0$ on $O C D, F(u, v)=0$ on $0^{\prime} C^{\prime} D^{\prime}$
Thus the boundary conditions on F are equivalent to solving the boundary conditions of ϕ of Q4A in (z).
Thus if we can solve $\nabla^{2} \phi=0$ in z we map back to get back $\nabla^{2} F=0$ in w. But we have solved $\nabla^{2} \phi=0+$ boundary conditions in Q4A.
Hence

$$
\phi(x, y)=1-\frac{1}{\pi} \tan ^{-1}\left(\frac{y}{x}\right)
$$

If we can find $x(u, v), y(u, v)$ we have solved the problem $\underline{\mathrm{OR}}$ we can say $\phi(x, y)=\operatorname{Im}\left(1-\frac{1}{\pi} \log z\right)$
So

$$
\begin{aligned}
F(u, v) & =\operatorname{Im}\left(1-\frac{1}{\pi} \log z(w)\right) \\
& =\operatorname{Im}\left(1-\frac{1}{\pi} \log \left[i\left(\frac{1-w}{1+w}\right)\right]\right)
\end{aligned}
$$

or
if $z=i \frac{(1-w)}{(1+w)}$
a little algebra gives

$$
x=\frac{2 v}{(1+u)^{2}+v^{2}}, y=\frac{1-\left(u^{2}+v^{2}\right)}{(1+u)^{2}+v^{2}}
$$

so $F(u, v)=\phi(x(u, v), y(u, v))$
$\Rightarrow F(u, v)=1-\frac{1}{\pi} \arctan \left[\frac{2 v}{1-\left(u^{2}+v^{2}\right)}\right]$

