Question

Defining $\log (z-a)=\log |z-1|+i \arg (z-a)$, show that the real and imaginary parts of $\log (z-a)$ are harmonic functions in any region not containing $z=a$.

Answer
Method 1
If R does not contain a, then $w=\ln (z-a)$ is analytic in R. Hence the real and imaginary parts are harmonic in R.
Method 2
Let $z-a=r e^{i \theta}$. Then $\log (z-a)=\log r+i \theta$.
Then in polars, Laplace's equation is

$$
\frac{\partial^{2} \phi}{\partial r^{2}}+\frac{1}{r} \frac{\partial \phi}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} \phi}{\partial \theta^{2}}=0
$$

Can substitute $\phi=\log r$ or $\phi=\theta$ and they automatically satisfy this equation. Hence Re and Im parts are harmonic.

