Question

Show that the functions (a) $x^2 - y^2 + 2y$ and (b) $\sin x \cosh y$ are harmonic in any finite region of the z-plane where z = x + iy.

Answer

(a) If
$$\phi = x^2 - y^2 + 2y$$

$$\frac{\partial^2 \phi}{\partial x^2} = 2, \ \frac{\partial^2 \phi}{\partial y^2} = -2 \Rightarrow \nabla^2 phi = 0$$

$$\Rightarrow \phi \text{ harmonic in } \mathbf{R}.$$

(b) If
$$\phi = \sin x \cosh y$$

$$\frac{\partial^2 \phi}{\partial x^2} = -\sin x \cosh y, \quad \frac{\partial^2 \phi}{\partial y^2} = \sin x \cosh y \Rightarrow \nabla^2 \phi = 0$$

$$\Rightarrow \phi \text{ harmonic in } \mathbf{R}.$$