
Question

A viscous incompressilbe fluid with constant density ρ and constant dynamic
viscosity µ flows unsteadily in the (x, y)-plane. There are no body foces.
Show that when the Reynolds number Re is much less than one the flow is
governed by the SLOW FLOW EQUATIONS

∇p = µ∇2q

divq = 0

where p and q denote respectively the pressure and velocity of the flow.
Show further that, for two-dimensional flow, if a stream function φ(x, y) is
defined in the normal way, then φ satisfies the biharmonic equation

∇
4φ = 0

In terms of plane polar coordinates (r, θ), a wedge of i ncreasing angle is
formed by hinging two infinte plates θ = ±Ωt at r = 0. The plates thus
move with angular velocities ±Ω. The value of Ω is chosen so that the plates
move slowly apart and slow viscous flow takes place between them. The
velocity of the fluid is denoted by q = uer + veθ where er and eθ are unit
vectors in the r and θ directions respectively.
Given that the stream function φ(r, θ) may be defined by

u =
1

r
φθ

v = −φr

and that, in spherical polar coordinates

∇
2φ = φrr +

1

r
φr +

1

r2
φθθ

verify that
φ = r2 [A1(t) sin 2θ + A2(t)θ]

is a suitable stream function for the flow, where A1(t) and A2(t) are functions
that should be determined. Show further that the mass flow passing across
any arc r = a is independent of time.
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Answer

Start with unsteady Navier-Stokes.

q
t
+ (q.∇)q =

−1

ρ
∇p+ ν∇2q

div(q) = 0











Non-dimensionalize by setting x = Lx, q = Uq, p =
(

µU

L

)

p, where L and U

are a representitive length and speed in the flow. Also set t =
(

L
U

)

t.

⇒

U2

L
(q
t
+ (q.∇)q) =

−µU

ρL2
∇p+

νU

L2
∇
2
q

∇.q = 0











The momentum equation now becomes Re[q
t
+ (q.∇)q] = −∇p+∇

2
q

So for Re¿ 1 we have to leading order (re-dimensionalize)
∇p = µ∇2q

div(q) = 0

}

Now if we define u = ψy, v = −ψx then ÷(q).
Also since curl(grad(p)) ≡ 0, we have ∇2curl(q).

Now, curl(q) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

i j k
∂

∂x

∂

∂y

∂

∂z
ψx −ψy 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

=







0
0

−ψxx − ψyy





 =







0
0

−∇2ψ







⇒ ∇2(−∇2ψ) = 0, so ψ satisfies the biharmonic equation

∇
4ψ = 0

θ= Ωt

Ωt
θ=− 

Now ψ = r2[A1 sin 2θ +A2θ]

∇
2ψ = 2[A1 sin 2θ + A2θ] + [A1 sin 2θ + A2θ] + [−4A1 sin 2θ]

= 4A2θ

But now ∇2(4A2θ0 = 0.
So certainly the given ψ satisfies the biharmonic equation.
Boundary conditions, (symmetric so need only look at θ = Ωt)
At θ = Ωt the plate velocity is 0ẽr + Ωẽθr
⇒ we need

u = 0, v = rΩ at θ = Ωt
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Thus ψθ = 0, ψr = −rΩ at θ = Ωt
⇒

r2[A1(t)2 cos 2Ωt+ A2(t)] = 0

2r[A1(t) sin 2Ωt+ A2Ωt] = −rΩ

Solving these ⇒

A1(t) =
−Ω

2[sin 2Ωt− 2Ωt cos 2Ωt]

A2(t) =
Ω cos 2Ωt

[sin 2Ωt− 2Ωt cos 2Ωt]

ψ =
r2

(sin 2Ωt− 2Ωt cos 2Ωt)

[

− sin 2θ

2
+ θ cos 2Ωt

]

Mass flow

ρ

∫ Ωt

θ=Ωt
ur dθ = ρ

∫ Ωt

−Ωt
ψθ dθ

= ρ[ψ(r1,Ωt)− ψ(r1,−Ωt)]

=
ρr2Ω

(sin 2Ωt− 2Ωt cos 2Ωt)

[

− sin 2Ωt

2
+ Ωt cos 2Ωt

−
sin 2Ωt

2
+ Ωt cos 2Ω4

]

= −ρr2Ω

⇒ independent of t.
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