Question

A viscous incompressible fluid with constant density ρ and constant dynamic viscosity μ flows unsteadily in the (x, y)-plane. There are no body foces. Show that when the Reynolds number Re is much less than one the flow is governed by the SLOW FLOW EQUATIONS

$$\nabla p = \mu \nabla^2 \underline{q}$$
$$\operatorname{div} \underline{q} = 0$$

where p and \underline{q} denote respectively the pressure and velocity of the flow. Show further that, for two-dimensional flow, if a stream function $\phi(x,y)$ is defined in the normal way, then ϕ satisfies the biharmonic equation

$$\nabla^4 \phi = 0$$

In terms of plane polar coordinates (r, θ) , a wedge of i ncreasing angle is formed by hinging two infinte plates $\theta = \pm \Omega t$ at r = 0. The plates thus move with angular velocities $\pm \Omega$. The value of Ω is chosen so that the plates move slowly apart and slow viscous flow takes place between them. The velocity of the fluid is denoted by $\underline{q} = u\underline{e}_r + v\underline{e}_\theta$ where \underline{e}_r and \underline{e}_θ are unit vectors in the r and θ directions respectively.

Given that the stream function $\phi(r,\theta)$ may be defined by

$$u = \frac{1}{r}\phi_{\theta}$$
$$v = -\phi_{r}$$

and that, in spherical polar coordinates

$$\nabla^2 \phi = \phi_{rr} + \frac{1}{r} \phi_r + \frac{1}{r^2} \phi_{\theta\theta}$$

verify that

$$\phi = r^2 \left[A_1(t) \sin 2\theta + A_2(t)\theta \right]$$

is a suitable stream function for the flow, where $A_1(t)$ and $A_2(t)$ are functions that should be determined. Show further that the mass flow passing across any arc r = a is independent of time.

Answer

Start with unsteady Navier-Stokes.

$$\begin{array}{rcl} \underline{q}_t + (\underline{q}.\nabla)\underline{q} & = & \dfrac{\overset{\circ}{-1}}{\rho}\nabla p + \nu\nabla^2\underline{q} \\ div(\underline{q}) & = & 0 \end{array} \right\}$$

Non-dimensionalize by setting $\underline{x} = L\overline{x}$, $\underline{q} = U\overline{q}$, $p = \left(\frac{\mu U}{L}\right)\overline{p}$, where L and U are a representitive length and speed in the flow. Also set $t = \left(\frac{L}{U}\right)\overline{t}$.

$$\Rightarrow \begin{array}{rcl} \frac{U^2}{L}(\overline{\underline{q}}_{\overline{t}}+(\overline{\underline{q}}.\overline{\nabla})\underline{\overline{q}}) & = & \frac{-\mu U}{\rho L^2}\overline{\nabla}\overline{p}+\frac{\nu U}{L^2}\overline{\nabla}^2\underline{\overline{q}} \\ \overline{\nabla}.\underline{\overline{q}} & = & 0 \end{array} \right\}$$

The momentum equation now becomes $Re[\underline{q}_{\overline{t}} + (\underline{q}.\overline{\nabla})\underline{q}] = -\overline{\nabla}\overline{p} + \overline{\nabla}^2\underline{q}$ So for $Re \ll 1$ we have to leading order (re-dimensionalize)

$$\nabla p = \mu \nabla^2 \underline{q}
\operatorname{div}(\underline{q}) = 0$$

Now if we define $u = \psi_y$, $v = -\psi_x$ then $\div(q)$.

Also since $curl(grad(p)) \equiv 0$, we have $\nabla^2 curl(q)$.

Now,
$$curl(\underline{q}) = \begin{vmatrix} \frac{i}{\partial} & \frac{j}{\partial} & \frac{k}{\partial} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \psi_x & -\psi_y & 0 \end{vmatrix} = \begin{pmatrix} 0 \\ 0 \\ -\psi_{xx} - \psi_{yy} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ -\nabla^2 \psi \end{pmatrix}$$

 $\Rightarrow \nabla^2(-\nabla^2\psi) = 0$, so ψ satisfies the biharmonic equation

$$\nabla^4 \psi = 0$$

$$\nabla^{2} \psi = 2[A_{1} \sin 2\theta + A_{2}\theta] + [A_{1} \sin 2\theta + A_{2}\theta] + [-4A_{1} \sin 2\theta]$$

= $4A_{2}\theta$

But now $\nabla^2(4A_2\theta 0 = 0.$

So certainly the given ψ satisfies the biharmonic equation.

Boundary conditions, (symmetric so need only look at $\theta = \Omega t$)

At $\theta = \Omega t$ the plate velocity is $0\tilde{\underline{e}}_r + \Omega \tilde{\underline{e}}_{\theta} r$

 \Rightarrow we need

$$u = 0$$
, $v = r\Omega$ at $\theta = \Omega t$

Thus
$$\psi_{\theta} = 0$$
, $\psi_{r} = -r\Omega$ at $\theta = \Omega t$ \Rightarrow

$$r^{2}[A_{1}(t)2\cos 2\Omega t + A_{2}(t)] = 0$$

$$2r[A_{1}(t)\sin 2\Omega t + A_{2}\Omega t] = -r\Omega$$

Solving these \Rightarrow

$$A_1(t) = \frac{-\Omega}{2[\sin 2\Omega t - 2\Omega t \cos 2\Omega t]}$$

$$A_2(t) = \frac{\Omega \cos 2\Omega t}{[\sin 2\Omega t - 2\Omega t \cos 2\Omega t]}$$

$$\psi = \frac{r^2}{(\sin 2\Omega t - 2\Omega t \cos 2\Omega t)} \left[\frac{-\sin 2\theta}{2} + \theta \cos 2\Omega t \right]$$

Mass flow

$$\rho \int_{\theta=\Omega t}^{\Omega t} ur \, d\theta = \rho \int_{-\Omega t}^{\Omega t} \psi_{\theta} \, d\theta$$
$$= \rho [\psi(r_{1}, \Omega t) - \psi(r_{1}, -\Omega t)]$$

$$= \frac{\rho r^2 \Omega}{(\sin 2\Omega t - 2\Omega t \cos 2\Omega t)} \left[\frac{-\sin 2\Omega t}{2} + \Omega t \cos 2\Omega t - \frac{\sin 2\Omega t}{2} + \Omega t \cos 2\Omega 4 \right]$$
$$= -\rho r^2 \Omega$$

 \Rightarrow independent of t.