## Question

A viscous incompressilbe fluid with constant density $\rho$ and constant dynamic viscosity $\mu$ flows unsteadily in the $(x, y)$-plane. There are no body foces. Show that when the Reynolds number $R e$ is much less than one the flow is governed by the SLOW FLOW EQUATIONS

$$
\begin{aligned}
\nabla p & =\mu \nabla^{2} \underline{q} \\
\operatorname{div} \underline{q} & =0
\end{aligned}
$$

where $p$ and $\underline{q}$ denote respectively the pressure and velocity of the flow.
Show further that, for two-dimensional flow, if a stream function $\phi(x, y)$ is defined in the normal way, then $\phi$ satisfies the biharmonic equation

$$
\nabla^{4} \phi=0
$$

In terms of plane polar coordinates $(r, \theta)$, a wedge of i ncreasing angle is formed by hinging two infinte plates $\theta= \pm \Omega t$ at $r=0$. The plates thus move with angular velocities $\pm \Omega$. The value of $\Omega$ is chosen so that the plates move slowly apart and slow viscous flow takes place between them. The velocity of the fluid is denoted by $\underline{q}=u \underline{e}_{r}+v \underline{e}_{\theta}$ where $\underline{e}_{r}$ and $\underline{e}_{\theta}$ are unit vectors in the $r$ and $\theta$ directions respectively.
Given that the stream function $\phi(r, \theta)$ may be defined by

$$
\begin{aligned}
u & =\frac{1}{r} \phi_{\theta} \\
v & =-\phi_{r}
\end{aligned}
$$

and that, in spherical polar coordinates

$$
\nabla^{2} \phi=\phi_{r r}+\frac{1}{r} \phi_{r}+\frac{1}{r^{2}} \phi_{\theta \theta}
$$

verify that

$$
\phi=r^{2}\left[A_{1}(t) \sin 2 \theta+A_{2}(t) \theta\right]
$$

is a suitable stream function for the flow, where $A_{1}(t)$ and $A_{2}(t)$ are functions that should be determined. Show further that the mass flow passing across any arc $r=a$ is independent of time.

## Answer

Start with unsteady Navier-Stokes.

$$
\left.\begin{array}{rl}
\underline{q}_{t}+(\underline{q} \cdot \nabla) \underline{q} & =\frac{-1}{\rho} \nabla p+\nu \nabla^{2} \underline{q} \\
\operatorname{div}(\underline{q}) & =0
\end{array}\right\}
$$

Non-dimensionalize by setting $\underline{x}=L \underline{\bar{x}}, \underline{q}=U \underline{\bar{q}}, p=\left(\frac{\mu U}{L}\right) \bar{p}$, where L and U are a representitive length and speed in the flow. Also set $t=\left(\frac{L}{U}\right) \bar{t}$.

$$
\left.\Rightarrow \begin{array}{rl}
\frac{U^{2}}{L}\left(\bar{q}_{\bar{t}}+(\underline{\bar{q}} \cdot \bar{\nabla}) \overline{\bar{q}}\right) & =\frac{-\mu U}{\rho L^{2}} \bar{\nabla} \bar{p}+\frac{\nu U}{L^{2}} \bar{\nabla}^{2} \overline{\underline{q}} \\
\bar{\nabla} \cdot \underline{\bar{q}} & =0
\end{array}\right\}
$$

The momentum equation now becomes $\operatorname{Re}\left[\bar{q}_{\bar{t}}+(\underline{\bar{q}} \cdot \bar{\nabla}) \underline{\bar{q}}\right]=-\bar{\nabla} \bar{p}+\bar{\nabla}^{2} \underline{\bar{q}}$
So for $R e \ll 1$ we have to leading order (re-dimensionalize)

$$
\left.\begin{array}{l}
\nabla p=\mu \nabla^{2} q \\
\operatorname{div}(\underline{q})=0
\end{array}\right\}
$$

Now if we define $u=\psi_{y}, v=-\psi_{x}$ then $\div(\underline{q})$.
Also since $\operatorname{curl}(\operatorname{grad}(p)) \equiv 0$, we have $\nabla^{2} \operatorname{curl}(\underline{q})$.
$\operatorname{Now}, \operatorname{curl}(\underline{q})=\left|\begin{array}{ccc}\frac{i}{\partial} & \frac{j}{\partial} & \frac{k}{\partial} \\ \frac{\partial x}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \psi_{x} & -\psi_{y} & 0\end{array}\right|=\left(\begin{array}{c}0 \\ 0 \\ -\psi_{x x}-\psi_{y y}\end{array}\right)=\left(\begin{array}{c}0 \\ 0 \\ -\nabla^{2} \psi\end{array}\right)$
$\Rightarrow \nabla^{2}\left(-\nabla^{2} \psi\right)=0$, so $\psi$ satisfies the biharmonic equation

$$
\nabla^{4} \psi=0
$$



Now $\psi=\mathrm{r}^{2}\left[\mathrm{~A}_{1} \sin 2 \theta+\mathrm{A}_{2} \theta\right]$

$$
\begin{aligned}
\nabla^{2} \psi & =2\left[A_{1} \sin 2 \theta+A_{2} \theta\right]+\left[A_{1} \sin 2 \theta+A_{2} \theta\right]+\left[-4 A_{1} \sin 2 \theta\right] \\
& =4 A_{2} \theta
\end{aligned}
$$

But now $\nabla^{2}\left(4 A_{2} \theta 0=0\right.$.
So certainly the given $\psi$ satisfies the biharmonic equation.
Boundary conditions, (symmetric so need only look at $\theta=\Omega t$ )
At $\theta=\Omega t$ the plate velocity is $0 \underline{e}_{r}+\Omega \tilde{e}_{\theta} r$
$\Rightarrow$ we need

$$
u=0, \quad v=r \Omega \quad \text { at } \theta=\Omega \mathrm{t}
$$

Thus $\psi_{\theta}=0, \psi_{r}=-r \Omega$ at $\theta=\Omega t$
$\Rightarrow$

$$
\begin{aligned}
r^{2}\left[A_{1}(t) 2 \cos 2 \Omega t+A_{2}(t)\right] & =0 \\
2 r\left[A_{1}(t) \sin 2 \Omega t+A_{2} \Omega t\right] & =-r \Omega
\end{aligned}
$$

Solving these $\Rightarrow$

$$
\begin{aligned}
A_{1}(t) & =\frac{-\Omega}{2[\sin 2 \Omega t-2 \Omega t \cos 2 \Omega t]} \\
A_{2}(t) & =\frac{\Omega \cos 2 \Omega t}{[\sin 2 \Omega t-2 \Omega t \cos 2 \Omega t]}
\end{aligned}
$$

$\psi=\frac{r^{2}}{(\sin 2 \Omega t-2 \Omega t \cos 2 \Omega t)}\left[\frac{-\sin 2 \theta}{2}+\theta \cos 2 \Omega t\right]$
Mass flow

$$
\begin{aligned}
& \begin{aligned}
\int_{\theta=\Omega t}^{\Omega t} u r d \theta & =\rho \int_{-\Omega t}^{\Omega t} \psi_{\theta} d \theta \\
& =\rho\left[\psi\left(r_{1}, \Omega t\right)-\psi\left(r_{1},-\Omega t\right)\right]
\end{aligned} \\
= & \frac{\rho r^{2} \Omega}{(\sin 2 \Omega t-2 \Omega t \cos 2 \Omega t)}\left[\frac{-\sin 2 \Omega t}{2}+\Omega t \cos 2 \Omega t\right. \\
& \left.-\frac{\sin 2 \Omega t}{2}+\Omega t \cos 2 \Omega 4\right] \\
= & -\rho r^{2} \Omega
\end{aligned}
$$

$\Rightarrow$ independent of t .

