Question

A solid sphere r = a is held fixed in an otherwise uniform free stream of
speed U which flows parallel to the z-axis. The REynolds number of the
stream is small. The fluid has constant density p and constant kinematic
viscosity v and its velocity it denoted by ¢ = ue, + vey where e, and ¢, are
unit vectors in the r and 6 directions respectively and (t, 0, ¢) are spherical
polar coordinates. The flow is axisymmetric (i.e. independent of ¢).

YOU MAY ASSUME that the Stoke stream function ¢ (r, ) for the flow is
defined by
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and that the slow flow equations in spherical polar coordinates are
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(i) Determine the boundary conditions for the flow.
(ii) By assuming a stream function of the form
Y =Ug(r)sin® 6
obtain v and v
(iii) Sketch the flow streamlines.

(iv) By considering the orders of magnitude of ¢ for large calues of a suit-
ably non-dimensionalised r, show that slow flow theory (and hence the
analysis carried out above) is invalid if r > O(1/Re).



Answer
(i) at r = a need ¢ = 1), = 0 (no-slip).
As r — oo we have ¢ = Ué,.
Now é, = cosfé, +sinfé,, éy = —sinfé, + cosbé,
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Applying the operator again=-
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(i)

(iv)

nn—0mn—-2)(n—3)—4n(n—1)+8n—-8=10
(n—=1)nn—-2)(n—3)—4n+8] =0
(mn—1)(n—-2)n*-3n—4]=0, n=1,2-1,4
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Conditions at co, = A=0, B=-=

Conditions at r = a = 2 ]% %
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(Any reasonable symmetric effort will be accepted)

We have ignoredRe(q.V)q in comparision to Vzg. Now for large r,

g~1, Vil (non—dimensional).

= Re ( ) < 3 if slow flow is to hold.

= Re < . But for fixed Re, (however small) we can always choose

r large enough to violate this.
= not valid for r > O (é)



