
Question

A solid sphere r = a is held fixed in an otherwise uniform free stream of
speed U which flows parallel to the x-axis. The REynolds number of the
stream is small. The fluid has constant density ρ and constant kinematic
viscosity ν and its velocity it denoted by q = uer + veθ where er and eθ are
unit vectors in the r and θ directions respectively and (t, θ, φ) are spherical
polar coordinates. The flow is axisymmetric (i.e. independent of φ).
YOU MAY ASSUME that the Stoke stream function ψ(r, θ) for the flow is
defined by

u =
1

r2 sin θ

∂ψ

∂θ

v = −
1

r sin θ

∂ψ

∂r

and that the slow flow equations in spherical polar coordinates are

(

∂2

∂2r
+

1

r2

∂2

∂θ2
−

cot θ

r2

∂

∂θ

)2

ψ = 0.

(i) Determine the boundary conditions for the flow.

(ii) By assuming a stream function of the form

ψ = Ug(r) sin2 θ

obtain u and v

(iii) Sketch the flow streamlines.

(iv) By considering the orders of magnitude of q for large calues of a suit-
ably non-dimensionalised r, show that slow flow theory (and hence the
analysis carried out above) is invalid if r ≥ O(1/Re).
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Answer

(i) at r = a need ψ = ψr = 0 (no-slip).

As r →∞ we have q = Uêx.

Now êr = cos θêx + sin θêy, êθ = − sin θêx + cos θêy

⇒ êr − sin θêθ

1

r2 sin θ
ψθ = U cos θ,

−1

r sin θ
ψr = −U sin θ

⇒ ψr ∼
1
2
Ur2 sin2 θ as r →∞

Now try ψ = Ug(r) sin2 θ

(ii)

(

∂2

∂r2
+

1

v2

∂2

∂θ2
−

cot θ

r2

∂

∂θ

)

Ug(r) sin2 θ

= U

[

g′′sin2θ +
g

r2
(2 cos2 θ − 2 sin2 θ)−

cos θ

r2 sin θ
g2 sin θ cos θ

]

= U
[

g′′ sin2 θ −
2g

r2
sin2 θ

]

= U sin2 θ
[

g′′
−

2g

r2

]

Applying the operator again⇒

U sin2 θ
(

g′′
−

2g

r2

)′′

+
U

r2

(

g′′
−

2g

r2

)

(2 cos2 θ − 2 sin2 θ)

−
cot θ

r2

(

g′′
−

2g

r2

)

2U sin θ cos θ

= U sin2 θ

(

g′′′
−

(

v22g′ − 2g2r

r4

))

′

−2

(

g′′

r2
−

2g

r4

)

U sin2 θ = 0

= U sin2 θ

(

g′′′′
−

(

2g′

r2

)

′

+
(

4g

r3

)′

−
2g′′

r2
+
4g

r4

)

= 0

= U sin2 θ

(

g′′′′
−

(

r22g′′ − 2r2g′

r4

)

+4

(

r3g′ − g3r2

r6

)

−
2g′′

r2
+
4g

r4

)

= 0

⇒ g′′′′
−

4g′′

r2
+
8g′

r3
−

8g

r4
= 0, put g = rn
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n(n− l)(n− 2)(n− 3)− 4n(n− 1) + 8n− 8 = 0

(n− 1)[n(n− 2)(n− 3)− 4n+ 8] = 0

(n− 1)(n− 2)[n2 − 3n− 4] = 0, n = 1, 2,−1, 4

⇒ ψ = U sin2 θ
[

Ar4 +Br2 + Cr +
D

r

]

Conditions at ∞, ⇒ A = 0, B = 1
2

Conditions at r = a ⇒

a2

2
+ Ca+

D

a
= 0

a+ c−
D

a2
= 0















C =
−3a

4

D =
a3

4

⇒ ψ = U sin2 θ

[

r2

2
−

3ar

4
+
a3

4r

]

⇒ u = U cos θ

[

1−
3a

2r
+

a3

2r3

]

v = U sin θ

[

−1 +
3a

4r
+

a3

4r3

]

(iii)

(Any reasonable symmetric effort will be accepted)

(iv) We have ignoredRe(q.∇)q in comparision to ∇2q. Now for large r,
q ∼ 1, ∇ ∼ 1

r
(non-dimensional).

⇒ Re
(

1
r

)

¿ 1
r2

if slow flow is to hold.

⇒ Re ¿ 1
r
. But for fixed Re, (however small) we can always choose

r large enough to violate this.

⇒ not valid for r ≥ O
(

1
Re

)
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