Question

Two-dimensional fluid flow takes place in the first quadrant of the (x, y) plane. The stream function for the flow is given by

$$
\psi(x, y)=C x y
$$

where C is a positive constant.
(i) Determine the flow velocity components.
(ii) Show that the flow is irrotational and incompressible.
(iii) Sketch the streamlines of the flow

The stream function ψ is now regarded as the outer flow of a high Reynolds number steady viscous flow (with no body forces) and we wish to examine the boundary later near the wall $y=0$. Derive the (dimensional) boundary layer equations

$$
\begin{aligned}
u u_{x}+v u_{y} & =C^{2} x+v u_{y y} \\
u_{x}+v_{y} & =0
\end{aligned}
$$

where u and v are the velocity components of the flow, and give suitable boundary conditions for these equations.
Verify that a similarity solution exists in the form

$$
\psi=x f(y)
$$

and determine the differential equation satisfied by f, giving suitable boundary conditions.

Answer

We have $\phi=C x y$, flow in $x \geq 0, y \geq 0$.
(i)

$$
\left.\begin{array}{l}
u=\phi_{y}=C x \\
v=-\phi_{x}=-C y
\end{array}\right\} \Rightarrow \underline{q}=(C x,-C y, 0)
$$

(ii) $\operatorname{curl} \underline{q}=\left|\begin{array}{ccc}\frac{i}{\partial} & \frac{j}{\partial} & \frac{k}{\partial} \\ \frac{\partial x}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ C x & -C y & 0\end{array}\right|=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right) \Rightarrow$ irrotational.

Also $\operatorname{div}(\underline{q})=\frac{\partial}{\partial x}(C x)+\frac{\partial}{\partial y}(-C y)+\frac{\partial}{\partial z}(0)=C-C=0$.
(iii) $\phi=0$ on $x=0, y=0$
$\phi=$ constant $=\beta$ say $\Rightarrow x y=$ constant \Rightarrow hyperbolae.

Now consider the Navier-Stokes equations

$$
\left.\begin{array}{c}
\underline{q}_{t}+(\underline{q} \cdot \nabla) \underline{q}=\frac{-1}{\rho} \nabla p+\nu \nabla^{2} \underline{q} \\
\operatorname{div}(\underline{q})=0
\end{array}\right\} \begin{aligned}
& \text { Non - dimensionalise with } \\
& \underline{x}=L \underline{\bar{x}}, \quad \underline{q}=U \underline{\bar{q}}, \quad p=\rho U^{2} \bar{p}
\end{aligned}
$$

Where L and U are a representitive length and speed.
(Dropping bars)

$$
\begin{gathered}
\frac{U^{2}}{L}(\underline{q} \cdot \nabla) \underline{q}=\frac{-U^{2}}{L} \nabla p+\frac{\nu U}{L^{2}} \nabla^{2} \underline{q}=0 \\
\operatorname{div}(\underline{q})=0
\end{gathered}
$$

Thus the momentum equation becomes

$$
(\underline{q} \cdot \nabla) \underline{q}=-\nabla p+\frac{1}{R e} \nabla^{2} \underline{q}, \quad\left(R e=\frac{L U}{\nu}\right)
$$

Away from the boundaries in the flow, since $R e \gg 1$ the flow is essentially inviscid so that $\phi=C x y$. But near $y=0$ we must rescale $y=\delta \tilde{y}, v=\delta \tilde{v} .(\delta \ll 1)$

$$
\begin{aligned}
& \Rightarrow \\
& u u_{x}+\tilde{v} u_{\tilde{y}}=-p_{x}+\frac{1}{R e}\left(u_{x x}+\frac{1}{\delta^{2}} u_{\tilde{y} \tilde{y}}\right) \\
& \delta\left(u \tilde{v}_{x}+\tilde{v} \tilde{v}_{\tilde{y}}\right)=\frac{1}{R e}\left(\delta \tilde{v}_{x x}+\frac{1}{\delta} \tilde{v}_{\tilde{y} \tilde{y}}\right) \\
& u_{x}+\tilde{v}_{\tilde{y}}=0
\end{aligned}
$$

Now consider the size of δ.
If $\delta^{2} R e \ll 1$ then $u_{\tilde{y} \tilde{y}}=0$ to leading order, and this can never match with the outer flow. If $\delta^{2} R e \gg 1$ then we just get back to the inviscid equations.
$\Rightarrow \delta^{2} R e=1$, so $\delta=\frac{1}{\sqrt{R e}}$.
Then the leading order equations (redimensionalized) are

$$
\left.\begin{array}{rl}
u u_{x}+v u+y & =\frac{-1}{\rho} p_{x}+\nu u_{y y} \\
0 & =p_{y} \\
u_{x}+v_{y} & =0
\end{array}\right\}
$$

Outer flow: $p+\frac{1}{2} p \underline{q}^{2}=\mathrm{constant}, \quad \Rightarrow p_{x}=-\rho u u_{x}$
But $u=C x, \quad \Rightarrow-p_{x}=\rho C^{2} x$
$\begin{aligned} \Rightarrow u u_{x}+v u_{y} & =C^{2} x+\nu u_{y} y \\ u_{x}+v_{y} & =0\end{aligned}$
Boundary conditions, $u=v=0$ on $y=0$ (no slip), $u \rightarrow C x$ as $y \rightarrow \infty$ (matching).

Now with $\phi=x f(y) \begin{array}{ll}u=x f^{\prime} & u_{y}=x f^{\prime \prime} \quad u_{y y}=x f^{\prime \prime \prime} \\ v=-f & u_{x}=f^{\prime}\end{array}$
$\Rightarrow x f^{\prime 2}-f x f^{\prime \prime}=C^{2} x+\nu x f^{\prime \prime \prime}$
$\Rightarrow f^{\prime 2}-f f^{\prime \prime}-C^{2}-\nu f^{\prime \prime \prime}=0$
$\Rightarrow \nu f^{\prime \prime \prime}+f f^{\prime \prime}-f^{\prime 2}+C^{2}=0$
Boundary conditions: $f(0)=f^{\prime}(0)=0, \quad f^{\prime}(\infty)=c$

