Question

A viscous incompressible fluid (having constant density ρ and constant kinematic viscosity ν) flows steadily in a pipe of constant cros-sectional are which has its generators parallel to the z-axis. There are no body forces. The crosssection of the pipe is denoted by D, so that the region occupied by the fluid is

$$
\{(x, y, z):(x, y) \in D,-\infty<z<\infty\}
$$

(a) By assuming a flow velocity \underline{q} of the form $\underline{q}=(0,0, w(x, y))$, show that w satisfies

$$
\nabla^{2} w=-\frac{P}{\mu}
$$

where P is a constant that should be identified. Give the boundary consdtion that is satisfied by w on δD, the boundary of D.
(b) Verify that the function

$$
\phi(x, y)=K\left(x^{2}-y^{2} / 3\right)(y-a \sqrt{3})
$$

satisfies $\nabla^{2} \phi=-P / \mu$ for a particular choice of K, which you should determine. By finding where $\phi=0$ in the (x, y)-plane, identify the shape of the pipe through which the flow velocity is given by $\underline{q}=$ $(0,0, \phi(x, y))$.
(c) Determine the mass flow rate along the pipe.

Answer

(a)

Assume that $\underline{q}=(0,0, w(x, y))$. Then

$$
\operatorname{div}(\underline{q})=\frac{\partial}{\partial z}(w(x, y)) \equiv 0
$$

Navier-Stokes give (note $\underline{q}_{t}=0$ and $\left.(\underline{q} . \nabla) \underline{q}=0\right)$

$$
\left.\begin{array}{l}
0=\frac{-p_{x}}{\rho}+\nu(0) \\
0=\frac{-p_{y}}{\rho}+\nu(0) \\
0=\frac{-p_{z}}{\rho}+\nu\left(w_{x x}+w_{y y}\right)
\end{array}\right\} \text { (no body forces) }
$$

So $p_{x}=p_{y}=0$ and $p=p(z)$ only. But from the 3rd equation, if $p=p(z)$ only and $w=w(x, y)$ only we must have $p_{z}=$ constant $=-P$ say (thus identifying P).

$$
\begin{aligned}
\Rightarrow & 0=\frac{P}{\rho}+\frac{\mu}{\rho}\left(w_{x x}+w_{y y}\right) \\
\Rightarrow & \nabla^{2} w=\frac{-P}{\mu} \quad((x, y) \in D)
\end{aligned}
$$

On ∂D we must have no-slip, so $w=0$ on ∂D.
(b) Consider $\phi(x, y)=K\left(x^{2}-\frac{y^{2}}{3}\right)(y-a \sqrt{3})$

$$
\begin{aligned}
\phi_{x} & =K 2 x(y-a \sqrt{3}) \\
\phi_{y} & =-\left(\frac{2 K y}{3}\right)(y-a \sqrt{3})+K\left(x^{2}-\frac{y^{2}}{3}\right) \\
\Rightarrow \phi_{y} & =-K y^{2}+K x^{2}+2 K a \sqrt{3} / 3 \\
\phi_{x x} & =K 2(y-a \sqrt{3}) 3 \\
\phi_{y y} & =-2 K y+2 K a / \sqrt{3} \\
\Rightarrow \quad & \\
\nabla^{2} \phi-\phi_{x x}+\phi y y & =2 K y-2 K a \sqrt{3}-2 K y+2 K a / \sqrt{3} \\
& =-4 K a / \sqrt{3}
\end{aligned}
$$

Thus $\nabla^{2} \phi=\frac{-P}{\mu}$ if $\frac{-P}{\mu}=\frac{-4 K a}{\sqrt{3}}$

$$
\Rightarrow K=\frac{\sqrt{3} P}{4 \mu a}
$$

Now let us consider where $\phi=0$ in the xy plane.
We have $\phi=0$ when

The lines intersect at :

$$
\begin{gathered}
O=(0,0) \\
A=(a, \sqrt{3} a) \\
B=(-a, \sqrt{3} a)
\end{gathered}
$$

So the pipe shape is a triangle. Moreover,
$|A B|=2 a,|O A|=\sqrt{a^{2}+(a \sqrt{3})^{2}}=2 A=|O B|$.
Thus the pipe is an EQUILATERAL TRIANGLE.
(c) To find the mass flow, need $\int_{D} \rho w d A$.

Since obviously symmetric about $x=0$

$$
\begin{aligned}
M & =2 \rho \int_{y=0}^{\sqrt{3} a} \int_{x=0}^{y / \sqrt{3}} \frac{\sqrt{3} P}{4 \mu a}\left(x^{2}-y^{2} / 3\right)(y-a \sqrt{3}) d x d y \\
& =\frac{2 \rho \sqrt{3} P}{(3 \sqrt{3}) 4 \mu a} \int_{0}^{a} \sqrt{3}\left(\frac{y^{3}}{3}-y^{3}\right)(y-a \sqrt{3}) d y \\
& =\frac{2 \rho P}{12 \mu a} \int_{0}^{a \sqrt{3}} \frac{-2 y^{3}}{3}(y-a \sqrt{3}) d y \\
& =\frac{-2 P \rho}{18 \mu a}\left[\frac{a^{5}(\sqrt{3})^{5}}{5}-\frac{\sqrt{3} a^{5}(\sqrt{3})^{4}}{4}\right] \\
& =\frac{P a^{4} \sqrt{3} \rho}{20 \mu}
\end{aligned}
$$

