Question

(a) Give a brief explanation of the difference between Eulerian and Lagrangian descriptions of a fluid flow. Denoting the Eulerian coordinates as usual by \underline{x} , prove that for any suitably smooth function $\phi(\underline{x},t)$

$$\frac{d\phi}{dt} = \phi_t + (\underline{q}.\nabla)\phi$$

where \underline{q} is the flow velocity and d/dt denotes the Lagrangian derivative. YOU MAY ASSUME that the equation of motion of a fluid with constant density ρ , stress tensor T and acceleration $\underline{a} = dq/dt$ is

$$\operatorname{div} T + \rho b = \rho a \longrightarrow (1)$$

where \underline{b} is the body force per unit mass.

- (i) State from which of Newton's laws (1) is derived and identify the physical quantity that is being conserved.
- (ii) Name the physical principle that may be used to show that $T = T^T$, and therefore that the stress temsor is symmetric.
- (iii) Assuming that the stress tensor for an incompressible linear viscous fluid is given by

$$T_{ij} = -p\delta_{ij} + 2\mu e_{ij},$$

derive the Navier-Stokes equations for the flow of a viscous fluid.

(b) Using tensorial notation or otherwise, prove, for suitably smooth vectors \underline{u} and \underline{v} , the vector identities

(i)
$$\nabla \times (\underline{v} \times \underline{v}) = (\underline{v}.\nabla)\underline{u} - (\underline{u}.\nabla)\underline{v} + \underline{u}\nabla.\underline{v} - \underline{v}\nabla.\underline{u}$$

(ii)
$$\nabla \times (\nabla \times \underline{u}) = \nabla(\nabla \cdot \underline{u}) = \nabla^2 \underline{u}$$

Answer

EULERIAN $\frac{\partial}{\partial x}$, fix attention on point \underline{x} fixed in space; seek to determine velocity $q(\underline{x},t)$

LAGRANGIAN $\frac{\partial}{\partial X}$, fix attention on and follow a given fluid particle with position \underline{X} at t=0; seek to determine the motion via $\underline{x}=\underline{x}(\underline{X},t)$

Now $\frac{d\phi}{dt}\Big|_X$ means fix \underline{X} . Relative to \underline{x} instead, use chain rule.

$$\frac{\partial \phi}{\partial t} = \frac{\partial \phi}{\partial t} \frac{dt}{dt} + \frac{\partial \phi}{\partial x} \frac{dx}{dt} + \frac{\partial \phi}{\partial y} \frac{dy}{dt} + \frac{\partial \phi}{\partial z} \frac{dz}{dt}$$

But by definition $\frac{\partial x}{\partial t} = u$, $\frac{\partial y}{\partial t} = v$, $\frac{\partial z}{\partial t} = w$.

$$\Rightarrow \frac{d\phi}{dt}\Big|_{X} = \frac{\partial\phi}{\partial t} + u\phi_{x} + v\phi_{y} + w\phi_{t} = \phi_{t} + (\underline{q}.\nabla)\phi$$

Now we have $div(T) + \rho \underline{b} = \rho \underline{\alpha}$

- (i) This is derived from Newtons 2nd law; linear momentum is being conserved.
- (ii) Conservation of angular (moment of) momentum leads to the symmetry of the stress tensor.
- (iii) With

$$T_{ij} = -p\delta_{ij} + 2\mu e_{ij}$$

$$div(T) = \frac{\partial T_{ij}}{\partial x_j} = -\delta_{ij} \frac{\partial p}{\partial x_j} + \mu \frac{\partial}{\partial x_j} (\frac{\partial q_i}{\partial x_j} + \frac{\partial q_j}{\partial x_i})$$
$$= -\frac{\partial p}{\partial x_i} + \mu \nabla^2 \underline{q} + \mu \nabla (\nabla \underline{q})$$

So
$$divT = -\nabla p + \mu \nabla^2 q + \mu \nabla (\nabla \cdot q)$$

Now $\nabla q = 0$ since incompressible.

$$\Rightarrow -\nabla \underline{p} + \mu \nabla^2 q + \rho \underline{b} = \rho \underline{a} = \rho(\underline{q}_t + (\underline{q}.\nabla)\underline{q})$$

$$\Rightarrow \underline{q}_t + (\underline{q}.\nabla)\underline{q} = -\frac{1}{\rho}\nabla p + \nu \nabla^2 \underline{q} \text{ (Navier-Stokes)}$$

(b)

$$\nabla \times (\underline{u} \times \underline{v}) = \epsilon_{ijk} \frac{\partial}{\partial x_j} (\underline{u} \times \underline{v})_k = \epsilon_{ijk} \frac{\partial}{\partial x_j} (\epsilon_{klm} u_l v_m)$$

$$= \epsilon_{kij} \epsilon_{klm} (\frac{\partial u_l}{\partial x_j} v_m + u_l \frac{\partial v_m}{\partial x_j})$$

$$= (\delta_{il} \delta_{jm} - \delta_{jl} \delta_{mi}) (v_m \frac{\partial u_l}{\partial x_j} + u_l \frac{\partial v_m}{\partial x_j})$$

$$= v_j \frac{\partial u_i}{\partial x_j} + u_i \frac{\partial v_j}{\partial x_j} - v_i \frac{\partial u_j}{\partial x_j} - u_j \frac{\partial v_m}{\partial x_j}$$

$$= (v \cdot \nabla) u + u div(v) - v div(u) - (u \cdot \nabla) v$$

$$\nabla \times (\nabla \times \underline{u}) = \epsilon_{ijk} \frac{\partial}{\partial x_j} (\nabla \times \underline{u})_k = \epsilon_{ijk} \frac{\partial}{\partial x_j} (\epsilon_{klm} \frac{\partial u_m}{\partial x_l})$$

$$= \epsilon_{kij} \epsilon_{klm} \frac{\partial^2 u_m}{\partial x_j \partial x_l} = (\delta_{il} \delta_{jm} - \delta_{jl} \delta_{im}) \frac{\partial^2 u_m}{\partial x_j \partial x_l}$$

$$= \frac{\partial^2 u_j}{\partial x_j \partial x_i} - \frac{\partial^2 u_i}{\partial x_j \partial x_j} = \nabla (\nabla \cdot \underline{u}) - \nabla^2 \underline{u}$$