QUESTION

For each of the following diophantine equations
(i) decide whether or not the solution exists,
(ii) if a solution exists, find the general solution,
(iii) Find the solution in which x takes the smallest possible positive integer value.
(a) $15 x+28 y=5$
(b) $18 x+27 y=7$
(c) $12 x+2 y=8$

ANSWER
(a) (i) $\operatorname{gcd}(15,28)=1$, which divides 5 , so solutions exist.
(ii) We seek a particular solution $\left(x_{0}, y_{0}\right)$. If we can find it, then by th.1.11, the general solution is $\left(x_{0}+28 t, y_{0}-15 t\right)$ where $t \in Z$.
For a particular solution, we first use the Euclidean algorithm to solve $15 x+28 y=1$:

$$
\begin{aligned}
28 & =15.1+13 \\
15 & =13.1+2 \\
13 & =2.6+1 \\
2 & =2.1+0
\end{aligned}
$$

Thus $\operatorname{gcd}(15,28)=1=13-2.6=13-(15-13) .6=13.7-15.6=$ $(28-15) .7-15.6=28.7-15.13$. Multiplying by $5,5=15-65+$ 28.35, so that $x_{0}=-65$ and $y_{0}=35$ is a solution.

Hence $x=-65+28 t, y=35-15 t(t \in Z)$ is the general solution.
(iii) To make $x>0$ we need $-65+28 t>0$, and the smallest $t \in Z$ for which this happens (and hance gives the smallest positive x) is 3 . Thus the relevant solution is $x=19, y=-10$.
(b) $\operatorname{gcd}(18,27)=9$, which does not divide 7 , so this equation has no solutions.
(c) (i) $\operatorname{gcd}(12,2)=2$, which divides 8 , so solutions exist.
(ii) If $\left(x_{0}, y_{0}\right)$ is a particular solution, then by th.1.11, the general solution is $x=x_{0}+\left(\frac{2}{2}\right) t, y=y_{0}-\left(\frac{12}{2}\right) t$, i.e. $x=x_{0}+t, y=$ $y_{0}-6 t$, where $t \in Z$.
To find a particular solution, we could follow the general policy, as we did in (a), but this time a short cut is available: if $12 x+2 y=8$ then, on dividing by $2,6 x+y=4$, and there is an obvious solution with $x=0, y=4$. The general solution is, therefore, $x=t, y=$ $4-6 t$.
(iii) The solution where x takes the smallest positive value is given by $t=1$. It is $x=1, y=-2$.

