QUESTION

Prove that $\operatorname{gcd}\left(n^{3}+n-1, n+1\right)$ is either 1 or 3 . Can both possibilities occur?
ANSWER
By long division, $n^{3}+n-1=\left(n^{2}-n+2\right)(n+1)-3$, so by lemma 1.9 $\operatorname{gcd}\left(n^{3}+n-1, n+1\right)=\operatorname{gcd}(n+1,3)$ and as the only divisors of 3 are 1 and 3 , this nust be 1 or 3 .
Both possibilities occur: e.g. $n=1$ gives $\operatorname{gcd}=1$ and $n=2$ gives $\operatorname{gcd}=3$.

