QUESTION

Are the following true or false? Give a proof or a counterexample, as appropriate.
(i) if $\operatorname{gcd}(a, b)=d$, then $\operatorname{gcd}(a+d, b)=d$.
(ii) If $\operatorname{gcd}(a, b)=1$ and $c \mid a$, then $\operatorname{gcd}(c, b)=1$.
(iii) If $\operatorname{gcd}(a, b)=\operatorname{gcd}(a, c)=d$, then $\operatorname{gcd}(b, c)=d$.
(iv) If $\operatorname{gcd}(a, b)=1$ and $\operatorname{gcd}(a, c)=1$, then $\operatorname{gcd}(a, b c)=1$.
(Hint: Corollary 1.5 will help here.)
ANSWER
(i) FALSE: e.g. $\operatorname{gcd}(10,12)=2$, but $\operatorname{gcd}(10+2,12)=\operatorname{gcde}(12,12)=12 \neq 2$.
(ii) TRUE: Let $\operatorname{gcd}(c, b)=d$, then $d \mid b$ and $d \mid c$, and so, since $c \mid a$, we have $d \mid a$ (th.1.3(3)). Thus d is a common divisor of a and b, so $d \leq \operatorname{gcd}(a, b)=1$. Since, by definition of gcd, we already know that $d \geq 1$, the result follows.
(iii) FALSE: e.g. $\operatorname{gcd}(2,4)=\operatorname{gcd}(2,8)=2$, but $\operatorname{gcd}(4,8)=4 \neq 2$.
(iv) TRUE: $\operatorname{gcd}(a, b)=\operatorname{gcd}(a, c)=1$, so by cor.1.5 we can find integers x, y, u, v such that $a x+b y=1$ and $a u+c v=1$. Multiplying these together and rearranging give:-

$$
1=(a x+b y)(a u+c v)=a(a x u+x c v+u b y)+b c . y v
$$

Thus we have found integers $r=a x u+x c v+u b y$ and $s=y v$ such that $1=a r+(b d) s$, and then cor.1.5 gives $\operatorname{gcd}(a, b c)=1$ as required.

