QUESTION

Prove, by induction, that for all $n \geq 1,5^{2 n}+7$ is divisible by 8 .
ANSWER
Take as inductive hypothesis the statement $8 \mid 5^{2 n}+7$.
When $n=1,5^{2 n}+7=32=8.4$, so induction begins.
Now $8 \mid 5^{2 n}+7$ implies $5^{2 n}+7=8 k$ for some integer k, so $5^{2 n}=8 k-7$.
Thus $5^{2(n+1)}+7=5^{2 n} .5^{2}+7=25(8 k-7)+7=25.8 k-7.24=8(25 k-21)$. Thus $5^{2(n+1)}+7$ is divisible by 8 .
This completes the inductive step, so $8 \mid 5^{2 n}+7$ is true for all natural numbers N by induction.

