QUESTION

Prove, by induction, that for all $n \ge 1$, $5^{2n} + 7$ is divisible by 8.

ANSWER

Take as inductive hypothesis the statement $8|5^{2n} + 7$.

When n = 1, $5^{2n} + 7 = 32 = 8.4$, so induction begins.

Now $8|5^{2n} + 7$ implies $5^{2n} + 7 = 8k$ for some integer k, so $5^{2n} = 8k - 7$. Thus $5^{2(n+1)} + 7 = 5^{2n} \cdot 5^2 + 7 = 25(8k - 7) + 7 = 25 \cdot 8k - 7 \cdot 24 = 8(25k - 21)$.

Thus $5^{2(n+1)} + 7$ is divisible by 8.

This completes the inductive step, so $8|5^{2n}+7$ is true for all natural numbers N by induction.