
CONTINUED FRACTIONS
SYMMETRIC CONTINUED FRACTIONS

Let [a0, . . . , an] =
pn

qn

Then

pn = anpn−1 + pn−1 0 < pn−2 < pn−1

pn−1 = an−1pn−2 + pn−3 0 < pn−1 < pn−2

...

p2 = a2p1 + p0

p1 = a1p0 + 1 (p0 = a0)

p0 = a0.1

This is the Euclidean algorithm for (pn, pn−1)
So pn

pn−1
= [an, . . . , ao]- the reverse of

pn

qn

Also

qn = anqn−1 + qn−2

qn−1 = an−1qn−2 + qn−3

...

q2 = a2q1 + 1 q0 = 1

q1 = a1.1

Again this is the Euclidean Algorithm so qn

qn−1

= [an, . . . , a1]

Now suppose we have a symmetric continuous function [a0, a1, a2, . . . , a2, a1, a0]
what can we say about the rational it gives rise to.
Theorem
A necessary and sufficient condition that an irreducible rational P

Q
(P > Q >

1) should have a symmetric continued function with an even number of ai’s
is that Q2 + 1 should be divisible by P .
A necessary and sufficient condition that an irreducible rational P

Q
(P > Q >

1) should have a symmetric continued function with an odd number of ai’s
is that Q2 − 1 should be divisible by P .
Proof
Necessity
Suppose P

Q
= [a0, a1, . . . a1, a0] =

pn

qn
with n+1 entries. Since (P,Q) = 1, P =

pn and Q = qn. Because of symmetry
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pn

qn

=
pn

pn−1

,

so qn = pn−1.
From the equation pnqn−1 − pn−1qn = (−1)

n−1 we have

Pqn−1 − (qn)
2 = (−1)n−1

P.qn−1 = Q2+)(−1)n−1

so Q2 + (−1)n−1 is divisible by P .
Sufficiency
Suppose Q2 + ε = PQ′ ε = ±1 Q′ ∈ N

Expand P
Q
as a continued fraction

P

Q
= [a0, . . . , an] =

pn

qn

where n is chosen so that (−1)n−1 = ε. This is possible because of the
ambiguity at the end of a finite continued fraction. Now (P,Q) = 1 so
P = pn Q = qn and so q2

n + ε = pnQ
′ also qnpn−1 + (−1)

n−1 = pnqn−1

Subtracting gives qn(qn − pn−1) = pn(Q
′ − qn−1)

Hence qn − pn−1 is divisible by pn since (pn, qn) = 1.
But pn > qn > 0 and pn > pn−1 > 0
so pn > |qn − pn−1|
So, since pn|qn − pn−1, qn − pn−1 = 0
so pn

qn
= [a0, . . . an] =

pn

pn−1

but pn

pn−1

= [an, . . . , a0]. So the continued fraction is symmetric.
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