CONTINUED FRACTIONS

 SYMMETRIC CONTINUED FRACTIONSLet $\left[a_{0}, \ldots, a_{n}\right]=\frac{p_{n}}{q_{n}}$
Then

$$
\begin{aligned}
p_{n} & =a_{n} p_{n-1}+p_{n-1} 0<p_{n-2}<p_{n-1} \\
p_{n-1} & =a_{n-1} p_{n-2}+p_{n-3} 0<p_{n-1}<p_{n-2} \\
\vdots & \\
p_{2} & =a_{2} p_{1}+p_{0} \\
p_{1} & =a_{1} p_{0}+1\left(p_{0}=a_{0}\right) \\
p_{0} & =a_{0} .1
\end{aligned}
$$

This is the Euclidean algorithm for $\left(p_{n}, p_{n-1}\right)$
So $\frac{p_{n}}{p_{n}-1}=\left[a_{n}, \ldots, a_{o}\right]$ - the reverse of $\frac{p_{n}}{q_{n}}$
Also

$$
\begin{aligned}
q_{n} & =a_{n} q_{n-1}+q_{n-2} \\
q_{n-1} & =a_{n-1} q_{n-2}+q_{n-3} \\
\vdots & \\
q_{2} & =a_{2} q_{1}+1 q_{0}=1 \\
q_{1} & =a_{1} .1
\end{aligned}
$$

Again this is the Euclidean Algorithm so $\frac{q_{n}}{q_{n-1}}=\left[a_{n}, \ldots, a_{1}\right]$
Now suppose we have a symmetric continuous function $\left[a_{0}, a_{1}, a_{2}, \ldots, a_{2}, a_{1}, a_{0}\right]$ what can we say about the rational it gives rise to.
Theorem
A necessary and sufficient condition that an irreducible rational $\frac{P}{Q}(P>Q>$ 1) should have a symmetric continued function with an even number of a_{i} 's is that $Q^{2}+1$ should be divisible by P.
A necessary and sufficient condition that an irreducible rational $\frac{P}{Q}(P>Q>$ 1) should have a symmetric continued function with an odd number of a_{i} 's is that $Q^{2}-1$ should be divisible by P.
Proof
Necessity
Suppose $\frac{P}{Q}=\left[a_{0}, a_{1}, \ldots a_{1}, a_{0}\right]=\frac{p_{n}}{q_{n}}$ with $n+1$ entries. Since $(P, Q)=1, P=$ p_{n} and $Q=q_{n}$. Because of symmetry

$$
\frac{p_{n}}{q_{n}}=\frac{p_{n}}{p_{n-1}},
$$

so $q_{n}=p_{n-1}$.
From the equation $p_{n} q_{n-1}-p_{n-1} q_{n}=(-1)^{n-1}$ we have

$$
\begin{gathered}
P q_{n-1}-\left(q_{n}\right)^{2}=(-1)^{n-1} \\
\left.P . q_{n-1}=Q^{2}+\right)(-1)^{n-1}
\end{gathered}
$$

so $Q^{2}+(-1)^{n-1}$ is divisible by P.
Sufficiency
Suppose $Q^{2}+\varepsilon=P Q^{\prime} \varepsilon= \pm 1 Q^{\prime} \in N$
Expand $\frac{P}{Q}$ as a continued fraction

$$
\frac{P}{Q}=\left[a_{0}, \ldots, a_{n}\right]=\frac{p_{n}}{q_{n}}
$$

where n is chosen so that $(-1)^{n-1}=\varepsilon$. This is possible because of the ambiguity at the end of a finite continued fraction. Now $(P, Q)=1$ so $P=p_{n} Q=q_{n}$ and so $q_{n}^{2}+\varepsilon=p_{n} Q^{\prime}$ also $q_{n} p_{n-1}+(-1)^{n-1}=p_{n} q_{n-1}$ Subtracting gives $q_{n}\left(q_{n}-p_{n-1}\right)=p_{n}\left(Q^{\prime}-q_{n-1}\right)$
Hence $q_{n}-p_{n-1}$ is divisible by p_{n} since $\left(p_{n}, q_{n}\right)=1$.
But $p_{n}>q_{n}>0$ and $p_{n}>p_{n-1}>0$
so $p_{n}>\left|q_{n}-p_{n-1}\right|$
So, since $p_{n} \mid q_{n}-p_{n-1}, q_{n}-p_{n-1}=0$
so $\frac{p_{n}}{q_{n}}=\left[a_{0}, \ldots a_{n}\right]=\frac{p_{n}}{p_{n-1}}$
but $\frac{p_{n}}{p_{n-1}}=\left[a_{n}, \ldots, a_{0}\right]$. So the continued fraction is symmetric.

