CONTINUED FRACTIONS
 RATIONAL NUMBERS

We now insist that $a_{n} \in N$ for all n. Every finite continued fraction represents a rational number.
Furthermore every rational number can be represented as a finite continued fraction, from the Euclidean algorithm.
Now suppose that

$$
x=a_{0}+\frac{1}{a_{1}+} \cdots \frac{1}{a_{N}} \quad x \in Q
$$

If we insist that the last a_{N} is >1 then this is unique. Otherwise the only other representation is

$$
x=a_{0}+\frac{1}{a_{1}+}+\ldots \frac{1}{a_{N-1}+} \frac{1}{\left(a_{N}-1\right)+} \frac{1}{1}
$$

Proof
Let $x \in Q$ and suppose $x=\left[a_{0} ; a_{i} \ldots a_{N}\right]=\left[b_{0} ; b_{1} \ldots b_{M}\right]$
Let $a_{n}^{\prime}=\left[a_{n} ; a_{n+1} \ldots a_{N}\right] b_{n}^{\prime}\left[n_{n} ; n_{n+1} \ldots b_{M}\right]$
So

$$
\begin{aligned}
x & =\left[a_{0} ; a_{1} \ldots a_{n-1}, a_{n}^{\prime}\right] 1 \leq n \leq N \\
& =\left[b_{0} ; b_{1} \ldots b_{n-1}, b_{n}^{\prime}\right] 1 \leq n \leq M
\end{aligned}
$$

For $n<N$

$$
a_{n}^{\prime}=a_{n}+\frac{1}{a_{n+1}^{\prime}},\left(a_{n+1},>1\right)
$$

so that we must have $a_{n}=\left[a_{n}^{\prime}\right]$
Similarly for $n<M b_{n}=\left[b_{n}^{\prime}\right]$
Now we must have $a_{0}=b_{0}=[x]$, so suppose $a_{1}=b_{1}, \ldots a_{n-1}=b_{n-1}$
so $\frac{p_{n-1}}{q_{n-1}}=\left[a_{0} ; \ldots, a_{n-1}\right]=\left[b_{0} ; \ldots b_{n-1}\right]$
Thus

$$
x=\frac{a_{n}^{\prime} p_{n-1}+p_{n-2}}{a_{n}^{\prime} q_{n-1}+q_{n-2}}=\frac{b_{n}^{\prime} p_{n-1}+p_{n-2}}{b_{n}^{\prime} q_{n-1}+q_{n-2}}
$$

Cross multiplying gives

$$
b_{n}^{\prime}\left(p_{n-2} q_{n-1}-p_{n-1} q_{n-2}\right)=a_{n}^{\prime}\left(p_{n-2} q_{n-1}-p_{n-1} q_{n-2}\right)
$$

so $a_{n}^{\prime}=b_{n}^{\prime}$ since the term in the bracket $=(-1)^{n} \neq 0$.

So, since $a_{n}=\left[a_{n}^{\prime}\right]$ and $b_{n}=\left[b_{n}^{\prime}\right] a_{n}=b_{n}$.
So $a_{n}=b_{n}$ for all n, and when one expansion terminates so does the other. Note that $a_{n}=\left[a_{n}^{\prime}\right]$ requires $a_{n}+1>1$. If $a_{n+1}^{\prime}=1$ then $a_{n}=\left[a_{n}^{\prime}\right]-1$ and $a_{n+1}=1$, and the expansion terminates. All previous a_{i}^{\prime} are >1, otherwise the expansion would have terminated earlier.
Linear Diophantine Equations.
Because of the ambiguity at the end of the expansion of a rational number, we can always an expansion $\left[a_{o} ; \ldots a_{N}\right]$ with N odd.
Let $x=\frac{a}{b}$. So $\frac{a}{b}=\frac{p_{n}}{q_{n}}$

$$
p_{N} q_{N-1}-q_{N} p_{N-1}=(-1)^{N-1}=1
$$

i.e.

$$
a q_{N-1}-b p_{N-1}=1
$$

So $x=p_{N-1} y=q_{N-1}$ is a positive integer solution of the equation $a x-b y=1$ Notice that this shows $\left(P_{N-1}, q_{N-1}\right)=1$
In fact since $p_{n} q_{n-1}-q_{n} p_{n-1}=(-1)^{n-1},\left(p_{n}, q_{n}\right)=1$ for any n
So when we "add up" a continued fraction we always obtain the rational answer in it's lowest terms.
The following result concerns approximation.
Let α be a real algebraic number of degree n. So

$$
f(\alpha)=a_{n} \alpha_{n}+a_{n-1} \alpha^{n-1}+\ldots+a_{0}=0, a_{n} \neq 0, a_{i} \in Z
$$

Now $\exists M, \forall x \in(\alpha-1, \alpha+1)\left|f^{\prime}(x)\right|<M$ Suppose $\frac{p}{q} \neq$ alpha is an approximation to α, close enough to be in $(\alpha-1, \alpha+1)$, and nearer to α than any other root of $f(x)=0$, so $f\left(\frac{p}{q}\right) \neq 0$.

$$
\left|f\left(\frac{p}{q}\right)\right|=\frac{\left|a_{0} p^{n}+a_{1} p^{n-1} q+\ldots\right|}{q^{n}} \geq \frac{1}{q^{n}}
$$

since the numerator is a positive integer.

$$
F\left(\frac{p}{q}\right)=f\left(\frac{p}{q}\right)-f(\alpha)=\left(\frac{p}{q}-\alpha\right) f^{\prime}(\xi) M U T
$$

with ξ between $\frac{p}{q}$ and α so

$$
\left|\frac{p}{q}-\alpha\right|=\left|\frac{f\left(\frac{p}{q}\right)}{f^{\prime}(\xi)}\right|>\frac{1}{M q^{n}}=\frac{K}{q^{n}}
$$

We have already shown that if α is irrational then there are infinitely many solutions of

$$
\left|\frac{p}{q}-\alpha\right|<\frac{1}{q^{2}}
$$

α is said to be approximable to order 2 .
Now let $\alpha=0.110001000 \ldots=\frac{1}{10}+\frac{1}{10^{2!}}+\frac{1}{10^{3!}}+\ldots$
Let $n_{0} \in N$ and let $n>n_{0}$. Let

$$
\alpha_{n}=\frac{p}{10^{n!}}=\frac{p}{q}
$$

be the sum of the first n terms of the series

$$
\begin{gathered}
0<\alpha-\frac{p}{q}=\frac{1}{10^{(n+1)!}}+\frac{1}{10^{(n+2)!}}+\ldots \\
\quad<\frac{2}{10^{(n+1)!}}<\frac{2}{q^{n+1}}<\frac{2}{q^{n_{0}}}
\end{gathered}
$$

so α is approximable to order n_{0}, for any n_{0}.
Hence α is transcendental.
The theorem above shows that an algebraic number of degree n is not approximable to order $\nu=n$

A Thue (1901) improved this to $\nu=\frac{n}{2}+1$
C L Siegel (1921) improved this to $\nu>\min _{1 \leq s \leq n-1, s \in N}\left(\frac{n}{s+1}+s\right)$
F J Dyson
improved this to $\nu>2 \sqrt{n}$
K F Roth (1955) improved this to $\nu=2+\varepsilon$ for all $\varepsilon>0$
This result is best possible.

