
CONTINUED FRACTIONS
RATIONAL NUMBERS

We now insist that an ∈ N for all n. Every finite continued fraction represents
a rational number.
Furthermore every rational number can be represented as a finite continued
fraction, from the Euclidean algorithm.
Now suppose that

x = a0 +
1

a1+
. . .

1

aN

x ∈ Q

If we insist that the last aN is > 1 then this is unique. Otherwise the only
other representation is

x = a0 +
1

a1+
+ . . .

1

aN−1+

1

(aN − 1)+

1

1

Proof
Let x ∈ Q and suppose x = [a0; ai . . . aN ] = [b0; b1 . . . bM ]
Let a′n = [an; an+1 . . . aN ] b

′
n[nn;nn+1 . . . bM ]

So

x = [a0; a1 . . . an−1, a
′
n] 1 ≤ n ≤ N

= [b0; b1 . . . bn−1, b
′
n] 1 ≤ n ≤M

For n < N

a′n = an +
1

a′n+1

, (an+1, > 1)

so that we must have an = [a′n]
Similarly for n < M bn = [b′n]
Now we must have a0 = b0 = [x], so suppose a1 = b1, . . . an−1 = bn−1

so pn−1

qn−1
= [a0; . . . , an−1] = [b0; . . . bn−1]

Thus

x =
a′npn−1 + pn−2

a′nqn−1 + qn−2

=
b′npn−1 + pn−2

b′nqn−1 + qn−2

Cross multiplying gives

b′n(pn−2qn−1 − pn−1qn−2) = a′n(pn−2qn−1 − pn−1qn−2)

so a′n = b′n since the term in the bracket =(−1)n 6= 0.
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So, since an = [a′n] and bn = [b′n] an = bn.
So an = bn for all n, and when one expansion terminates so does the other.
Note that an = [a′n] requires an + 1 > 1. If a′n+1 = 1 then an = [a′n]− 1 and
an+1 = 1, and the expansion terminates. All previous a′i are > 1, otherwise
the expansion would have terminated earlier.
Linear Diophantine Equations.
Because of the ambiguity at the end of the expansion of a rational number,
we can always an expansion [ao; . . . aN ] with N odd.
Let x = a

b
. So a

b
= pn

qn

pNqN−1 − qNpN−1 = (−1)N−1 = 1

i.e.

aqN−1 − bpN−1 = 1

So x = pN−1 y = qN−1 is a positive integer solution of the equation ax−by = 1
Notice that this shows (PN−1, qN−1) = 1
In fact since pnqn−1 − qnpn−1 = (−1)n−1, (pn, qn) = 1 for any n

So when we “add up” a continued fraction we always obtain the rational
answer in it’s lowest terms.
The following result concerns approximation.
Let α be a real algebraic number of degree n. So

f(α) = anαn + an−1α
n−1 + . . .+ a0 = 0, an 6= 0, ai ∈ Z

Now ∃M,∀x ∈ (α − 1, α + 1)|f ′(x)| < M Suppose p

q
6= alpha is an approxi-

mation to α, close enough to be in (α− 1, α + 1), and nearer to α than any

other root of f(x) = 0, so f
(

p

q

)

6= 0.

∣

∣

∣

∣

∣

f

(

p

q

)∣

∣

∣

∣

∣

=
|a0p

n + a1p
n−1q + . . . |

qn
≥ 1

qn

since the numerator is a positive integer.

F

(

p

q

)

= f

(

p

q

)

− f(α) =

(

p

q
− α

)

f ′(ξ) MUT

with ξ between p

q
and α so

∣

∣

∣

∣

∣

p

q
− α

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

f
(

p

q

)

f ′ (ξ)

∣

∣

∣

∣

∣

∣

>
1

Mqn
=

K

qn
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We have already shown that if α is irrational then there are infinitely many
solutions of

∣

∣

∣

∣

∣

p

q
− α

∣

∣

∣

∣

∣

<
1

q2

α is said to be approximable to order 2.
Now let α = 0.110001000 . . . = 1

10
+ 1

102! +
1

103! + . . .

Let n0 ∈ N and let n > n0. Let

αn =
p

10n!
=

p

q

be the sum of the first n terms of the series

0 < α− p

q
=

1

10(n+1)!
+

1

10(n+2)!
+ . . .

<
2

10(n+1)!
<

2

qn+1
<

2

qn0

so α is approximable to order n0, for any n0.
Hence α is transcendental.
The theorem above shows that an algebraic number of degree n is not ap-
proximable to order ν = n

A Thue (1901) improved this to ν = n
2
+ 1

C L Siegel (1921) improved this to ν > min1≤s≤n−1,s∈N

(

n
s+1

+ s
)

F J Dyson (1947) improved this to ν > 2
√
n

K F Roth (1955) improved this to ν = 2 + ε for all ε > 0
This result is best possible.
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