CONTINUED FRACTIONS
PERIODIC CONTINUED FRACTIONS

Consider first a purely periodic continued fraction

o = [ao;al,ag...,an]
= [ag;ay,...,a,,q]

apn+pn—1
aqn+qn—1

80 ¢y + (qn-1 — Pp) — Pn—1 =0
This has two roots

So o =

>0

(Dn = Gn1) + 1/ (Pn — Gu1)? + 4GuP0s
2n

(pn - Qn—l) - \/(pn - Qn—1)2 + 4ann—1 <0
2qn

a =

Furthermore the LHS of the quadratic equation is —p,,_1 < 0 for « = 0 and
(¢ — @u-1) + (P — Pn_1 > 0 for « = —1. Thus @ > 0 and —1 < @ < 0.
Quadratic irrationals with this property are termed reduced.

This is related to reduced quadratic forms as Gauss defined them.

Now if we have a periodic continued function where the period starts at stage
k+1

/6 = [bo;blv‘"bk7a070’17"'an]
QP + Pr—1
aqr + qr—1

Since « is a quadratic irrational, so is .

Thus any periodic continued fraction represents a quadratic irrational.
Example

g =12,3,10,1,1,1] a = [10,1, 1,]

2+ % = g so 3 = Iat2

3a+1
To evaluate «
n —1 0 1 2 3

an, 10 1 1 1

p, 1 10 11 21 32

& 0 1 1 2 3
So



30’ +(2—-32)a—21 = 0
o —10a—7 = 0

The positive root is @ = 5+ /32 = 5 + 41/2.
So 3 = 35428v2+2 _ 20—/2

©15412v24+1 8
We now prove the convers.

Theorem
A continued fraction which represents a quadratic irrational is periodic (La-

grange)
Proof

Let a = % > 0 be a positive quadratic irrational.

_ Pm+vDm?2 __ P'+vVD’

Now o = Om =0
1 pr2 _p2

D'-pP? _ . D-P

o o € Z for suitable m.
So suppose w.l.o.g. ag = 130570*/5 and Qo|D — P? Dy, qy € Z

g = ag + a% SO a% = 7@+%’;“0Q0 and
o = Qo  VD-a@Qy—-PF  VD+P
L= — -
VD + Py — apyQy &[D — (apQo — Fo)?] 1

(note that Qql[]) where Py = agQo — Fo

D—(CLQQO—P())2_D—P12
Qo Qo

Q1=

So Qo = 25" ie. QuD — PP
so this divisibility property is preserved through the continued fraction algo-

rithm.
At the kth stage we therefore have «y = % where

P, = aklekfl — P

_ (D=£)
%= o0
A = [Oék]

We now show that the process eventually produces reduced quadratic irra-
tionals.



Op41Pm + Pn—1
Ont1qn + qn—1
If we denote @ the quadratic conjugate of a then we have

ap = [ag, ay, ... apQ11] =

__ Qp1Pn + Pn-1

Gy = ——
Ont1qn + qn—1
N ~— _ Pn-1
e = —0oqn-1 + Prn—1 o dn—1 Qo qn—1
Qodn — Pn qn Qg — q_:

Now as n — oo

= Pn-1

Qo dn—1 Qp — Qo

ap — &= Qp — Qp
an

so for all n sufficiently large

qn—1
SO @1 < 0 for all n sufficiently large.

If @ < 0 then from o = ai + a;ﬂ we conclude

Opy1 = — (1+¢,) |e| small

1

k41
So we conclude that for all n sufficiently large —1 < @, < 0, and since
a, > 1, «, is a reduced quadratic irrational.
Now if o = % is reduced then « —@ > 0 and o +@ > 0, so 2VD - () and

Q
%>080Q>0&nd80[’>0

Alsoa<0so P—+vD < 0ie P<+d.

Alsooz>1soQ<P—|—\/E

If N=[VD]wehave 0 < P < N and 0 < Q < 2N

so there is only a finite set of reduced quadratic irrationals associated with
a given v/D. So at some stage in the process we eventually have

=0 —ap < —a < —1

ap = O

1.e.

[ah; Ah41, Ap42, - - -] = [ak; Ap+1, Qf+15 - - -]

and by uniqueness the a’s are equal, so we have periodicity, where the shortest
period is < |k — h|
Note. If N = [v/D] there are at most 2N? RQI so the period is < 2N? ~ 2D
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2 — 20 -
a:\/_—8:[2,3,10,1,1,1]

N =1 but the period is > 2N?

This is because « is not in a form which satisfies the divisibility condi-
tion. We need to write

oV 2m?2 — 20m

—8m

«

(m > 0)

and we need 8m|2m? — (20m)? i.e. 8|2m — 400m

m = 4 is the first solution. So we must write oo = \/3__23_280

we then use the recursive scheme for the p’s and @)’s to obtain the
complete quotients.

k0 12 3 4 56
P, -8 165 5 2 2|5
Qe =32 711 7 4 7|1
a 2 3|10 1 1 1

P, = alclekfl — Py

0, D=
Qr—1
o = [AESD] [

(ii) The number of RQI is about < about 2D astablished above. This can
be improved. In 1971 KEH showed that this number is O(v/Dlog D)

We now want to see where the period starts. We have seen that a purely
periodic continued fraction represents a RQIL.

Theorem

A RQI has a purely periodic continued fraction (Galois)

Proof

Let ag be reduced, so ag > 1 and —1 <ag < 0

Novvocozao—l—ai1 and a; > 1

AlsooTozao—i-aé1 anda_0<080aé1:—ag+oz_o< —ag < —1

so —1 < @7 < 0 and so a3 is reduced. Continuing gives

ozn:an—i—ﬁ+1 and ———= =a, — @, and 0 < -, < 1

Qp41
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Thus

-hi-[-]

Q41

Suppose that the period for the continued fraction begins with a,, m > 1.
Then

ap = [ag, a1 - Q1T Gmi1 - - Gmik1)

period k and a1 # Qg1

o _ 1 1
Because of periodicity however, |alpha,, = q,x and so T T

Taking the integer part gives a,,—1 = Qg1

So the period must start at ag.

Given ag > 1, if ag < —1, «p is not reduced and so its contu=inued fraction
is not purely periodic. But @y < 0 = a3 reduced, so if @y < —1 then the
continued fraction has just one term before the period begins.

Suppose that g has just one term before the period begins

Qo = [a0§a17 e ;Gk]
oy is not reduced. Now a1 = 41 and ag = ag+ a% o = ap + a;ﬂ =ai+ a%
SO
L 1
Qo = ao+ —
aq
L 1
ay = ap+ —
(651

So, since —1 < a; < 0, if ag < —1, ap < a; and if ag > 1 ag > ai.
Naturally if apy > 1 the continued fraction for ay may have more then one
entry in its a cyclic part.



