CONTINUED FRACTIONS

 PERIODIC CONTINUED FRACTIONSConsider first a purely periodic continued fraction

$$
\begin{aligned}
\alpha & =\left[\overline{a_{0} ; a_{1}, a_{2} \ldots, a_{n}}\right] \\
& =\left[a_{0} ; a_{1}, \ldots, a_{n}, \alpha\right]
\end{aligned}
$$

So $\alpha=\frac{\alpha p_{n}+p_{n-1}}{\alpha q_{n}+q_{n-1}}$
so $\alpha^{2} q_{n}+\alpha\left(q_{n-1}-p_{n}\right)-p_{n-1}=0$
This has two roots

$$
\begin{aligned}
& \alpha=\frac{\left(p_{n}-q_{n-1}\right)+\sqrt{\left(p_{n}-q_{n-1}\right)^{2}+4 q_{n} p_{n-1}}}{2 q_{n}}>0 \\
& \bar{\alpha}=\frac{\left(p_{n}-q_{n-1}\right)-\sqrt{\left(p_{n}-q_{n-1}\right)^{2}+4 q_{n} p_{n-1}}}{2 q_{n}}<0
\end{aligned}
$$

Furthermore the LHS of the quadratic equation is $-p_{n-1}<0$ for $\alpha=0$ and $\left(q_{n}-q_{n-1}\right)+\left(p_{n}-p_{n-1}>0\right.$ for $\alpha=-1$. Thus $\alpha>0$ and $-1<\bar{\alpha}<0$.
Quadratic irrationals with this property are termed reduced.
This is related to reduced quadratic forms as Gauss defined them.
Now if we have a periodic continued function where the period starts at stage $k+1$

$$
\begin{aligned}
\beta & =\left[b_{0} ; b_{1}, \ldots b_{k}, \overline{a_{0}, a_{1}, \ldots a_{n}}\right] \\
\beta & =\frac{\alpha p_{k}+p_{k-1}}{\alpha q_{k}+q_{k-1}}
\end{aligned}
$$

Since α is a quadratic irrational, so is β.
Thus any periodic continued fraction represents a quadratic irrational.
Example
$\beta=[2,3, \overline{10}, 1,1,1] \alpha=[\overline{10,1,1,}]$
$2+\frac{1}{3}=\frac{7}{3}$ so $\beta=\frac{7 \alpha+2}{3 \alpha+1}$

To evaluate α					
n	-1	0	1	2	3
a_{n}		10	1	1	1
p_{n}	1	10	11	21	32
q_{n}	0	1	1	2	3

So

$$
\begin{aligned}
\alpha & =\frac{32 \alpha+21}{3 \alpha+2} \\
3 \alpha^{2}+(2-32) \alpha-21 & =0 \\
\alpha^{2}-10 \alpha-7 & =0
\end{aligned}
$$

The positive root is $\alpha=5+\sqrt{32}=5+4 \sqrt{2}$.
So $\beta=\frac{35+28 \sqrt{2}+2}{15+12 \sqrt{2}+1}=\frac{20-\sqrt{2}}{8}$
We now prove the convers.
Theorem
A continued fraction which represents a quadratic irrational is periodic (Lagrange)
Proof
Let $\alpha=\frac{P+\sqrt{D}}{Q}>0$ be a positive quadratic irrational.
Now $\alpha=\frac{P m+\sqrt{D m^{2}}}{Q m}=\frac{P^{\prime}+\sqrt{D^{\prime}}}{Q^{\prime}}$
$\frac{D^{\prime}-P^{\prime 2}}{Q^{\prime}}=m . \frac{D-P^{2}}{Q} \in Z$ for suitable m.
So suppose w.l.o.g. $\alpha_{0}=\frac{P_{0}+\sqrt{D}}{Q_{0}}$ and $Q_{0} \mid D-P_{0}^{2} D_{0}, q_{0} \in Z$
$\alpha_{0}=a_{0}+\frac{1}{\alpha_{1}}$ so $\frac{1}{\alpha_{1}}=\frac{\sqrt{D}+P_{0}-a_{0} Q_{0}}{Q_{0}}$ and

$$
\alpha_{1}=\frac{Q_{0}}{\sqrt{D}+P_{0}-a_{0} Q_{0}}=\frac{\sqrt{D}-a_{0} Q_{0}-P_{0}}{\frac{1}{Q_{0}}\left[D-\left(a_{0} Q_{0}-P_{0}\right)^{2}\right]}=\frac{\sqrt{D}+P_{1}}{Q_{1}}
$$

(note that $\left.Q_{0} \mid[]\right)$ where $P_{1}=a_{0} Q_{0}-P_{0}$

$$
Q_{1}=\frac{D-\left(a_{0} Q_{0}-P_{0}\right)^{2}}{Q_{0}}=\frac{D-P_{1}^{2}}{Q_{0}}
$$

So $Q_{0}=\frac{D-P_{1}^{2}}{Q_{1}}$ i.e. $Q_{1} \mid D-P_{1}^{2}$
so this divisibility property is preserved through the continued fraction algorithm.
At the k th stage we therefore have $\alpha_{k}=\frac{\sqrt{D}+P_{k}}{Q_{k}}$ where

$$
\begin{aligned}
P_{k} & =a_{k-1} Q_{k-1}-P_{k-1} \\
Q_{k} & =\frac{\left(D-P_{k}^{2}\right)}{Q_{k-1}} \\
a_{k} & =\left[\alpha_{k}\right]
\end{aligned}
$$

We now show that the process eventually produces reduced quadratic irrationals.

$$
\alpha_{0}=\left[a_{0}, a_{1}, \ldots a_{n} \alpha_{n+1}\right]=\frac{\alpha_{n+1} p_{m}+p_{n-1}}{\alpha_{n+1} q_{n}+q_{n-1}}
$$

If we denote $\bar{\alpha}$ the quadratic conjugate of α then we have

$$
\begin{aligned}
\overline{\alpha_{0}} & =\frac{\overline{\alpha_{n+1}} p_{n}+p_{n-1}}{\overline{\alpha_{n+1}} q_{n}+q_{n-1}} \\
\overline{\alpha_{n+1}} & =\frac{-\overline{\alpha_{0}} q_{n-1}+p_{n-1}}{\overline{\alpha_{0}} q_{n}-p_{n}}=-\frac{q_{n-1}}{q_{n}}\left(\frac{\overline{\alpha_{0}}-\frac{p_{n-1}}{q_{n-1}}}{\overline{\alpha_{0}}-\frac{p_{n}}{q_{n}}}\right)
\end{aligned}
$$

Now as $n \rightarrow \infty$

$$
\frac{\overline{\alpha_{0}}-\frac{p_{n-1}}{q_{n-1}}}{\overline{\alpha_{0}}-\frac{p_{n}}{q_{n}}} \rightarrow \frac{\overline{\alpha_{0}}-\alpha_{0}}{\overline{\alpha_{0}}-\alpha_{0}}=1
$$

so for all n sufficiently large

$$
\overline{\alpha_{n+1}}=-\frac{q_{n-1}}{q_{n}}\left(1+\varepsilon_{n}\right)|\varepsilon| \text { small }
$$

so $\overline{\alpha_{n+1}}<0$ for all n sufficiently large.
If $\overline{\alpha_{k}}<0$ then from $\alpha_{k}=a_{k}+\frac{1}{\alpha_{k+1}}$ we conclude

$$
\frac{1}{\overline{\alpha_{k+1}}}=\overline{\alpha_{k}}-a_{k}<-a_{k} \leq-1
$$

So we conclude that for all n sufficiently large $-1<\overline{\alpha_{n}}<0$, and since $\alpha_{n}>1, \alpha_{n}$ is a reduced quadratic irrational.
Now if $\alpha=\frac{P+\sqrt{D}}{Q}$ is reduced then $\alpha-\bar{\alpha}>0$ and $\alpha+\bar{\alpha}>0$, so $\frac{2 \sqrt{D}}{Q}>0$ and $\frac{2 \sqrt{P}}{Q}>0$ so $Q>0$ and so $P>0$
Also $\bar{\alpha}<0$ so $P-\sqrt{D}<0$ i.e. $P<\sqrt{d}$.
Also $\alpha>1$ so $Q<P+\sqrt{D}$
If $N=[\sqrt{D}]$ we have $0<P \leq N$ and $0<Q \leq 2 N$
so there is only a finite set of reduced quadratic irrationals associated with a given \sqrt{D}. So at some stage in the process we eventually have

$$
\alpha_{h}=\alpha_{k}
$$

i.e.

$$
\left[a_{h} ; a_{h+1}, a_{h+2}, \ldots\right]=\left[a_{k} ; a_{k+1}, a_{k+1}, \ldots\right]
$$

and by uniqueness the a 's are equal, so we have periodicity, where the shortest period is $\leq|k-h|$
Note. If $N=[\sqrt{D}]$ there are at most $2 N^{2}$ RQI so the period is $\leq 2 N^{2} \sim 2 D$
(i)

$$
\alpha=\frac{\sqrt{2}-20}{-8}=[2,3, \overline{10,1,1,1}]
$$

$N=1$ but the period is $>2 N$?
This is because α is not in a form which satisfies the divisibility condition. We need to write

$$
\alpha=\frac{\sqrt{2 m^{2}}-20 m}{-8 m}(m>0)
$$

and we need $8 m \mid 2 m^{2}-(20 m)^{2}$ i.e. $8 \mid 2 m-400 m$
$m=4$ is the first solution. So we must write $\alpha=\frac{\sqrt{32}-80}{-32}$ we then use the recursive scheme for the p 's and Q 's to obtain the complete quotients.

k	0	1	2	3	4	5	6
P_{k}	-80	16	5	5	2	2	5
Q_{k}	-32	7	1	7	4	7	1
a_{k}	2	3	10	1	1	1	

$$
\begin{aligned}
P_{k} & =a_{k-1} Q_{k-1}-P_{k-1} \\
Q_{k}=\frac{D-P_{k}^{2}}{Q_{k-1}} & \\
a_{k} & =\left[\frac{P_{k}+\sqrt{D}}{Q_{k}}\right]=\left[\frac{P_{k}+[\sqrt{D}]}{Q_{k}}\right]
\end{aligned}
$$

(ii) The number of RQI is about \leq about $2 D$ astablished above. This can be improved. In 1971 KEH showed that this number is $O(\sqrt{D} \log D)$

We now want to see where the period starts. We have seen that a purely periodic continued fraction represents a RQI.
Theorem
A RQI has a purely periodic continued fraction (Galois)
Proof
Let α_{0} be reduced, so $\alpha_{0}>1$ and $-1<\overline{\alpha_{0}}<0$
Now $\alpha_{0}=a_{o}+\frac{1}{\alpha_{1}}$ and $\alpha_{1}>1$
Also $\overline{\alpha_{0}}=a_{0}+\frac{1}{\overline{\alpha_{1}}}$ and $\overline{\alpha_{0}}<0$ so $\frac{1}{\overline{\alpha_{1}}}=-a_{0}+\overline{\alpha_{0}}<-a_{0} \leq-1$
so $-1<\overline{\alpha_{1}}<0$ and so α_{1} is reduced. Continuing gives
$\alpha_{n}=a_{n}+\frac{1}{\alpha_{n+1}}$ and $-\frac{1}{\overline{\alpha_{n+1}}}=a_{n}-\overline{\alpha_{n}}$ and $0<-\overline{\alpha_{n}}<1$

Thus

$$
a_{n}=\left[\alpha_{n}\right]=\left[-\frac{1}{\overline{\alpha_{n+1}}}\right]
$$

Suppose that the period for the continued fraction begins with $a_{m} m \geq 1$. Then

$$
\alpha_{0}=\left[a_{0}, a_{1} \ldots a_{m-1} \overline{a_{m} a_{m+1} \ldots a_{m+k-1}}\right]
$$

period k and $a_{m-1} \neq a_{m+k-1}$
Because of periodicity however, \mid alph $a_{m}=\alpha_{m+k}$ and so $-\frac{1}{\overline{\alpha_{m}}}=-\frac{1}{\alpha_{m+k}}$
Taking the integer part gives $a_{m-1}=a_{m+k-1}$
So the period must start at a_{0}.
Given $\alpha_{0}>1$, if $\overline{\alpha_{0}}<-1, \alpha_{0}$ is not reduced and so its contu=inued fraction is not purely periodic. But $\overline{\alpha_{0}}<0 \Rightarrow \alpha_{1}$ reduced, so if $\overline{\alpha_{0}}<-1$ then the continued fraction has just one term before the period begins.
Suppose that α_{0} has just one term before the period begins

$$
\alpha_{0}=\left[a_{0} ; \overline{a_{1}, \ldots, a_{k}}\right]
$$

α_{0} is not reduced. Now $\alpha_{1}=\alpha_{k+1}$ and $a_{0}=a_{0}+\frac{1}{\alpha_{1}} \alpha_{k}=a_{k}+\frac{1}{\alpha_{k+1}}=a_{k}+\frac{1}{\alpha_{1}}$ so

$$
\begin{aligned}
& \overline{\alpha_{0}}=a_{0}+\frac{1}{\overline{\alpha_{1}}} \\
& \overline{\alpha_{k}}=a_{k}+\frac{1}{\overline{\alpha_{1}}}
\end{aligned}
$$

So, since $-1<\overline{a_{k}}<0$, if $\overline{\alpha_{0}}<-1, a_{0}<a_{k}$ and if $\overline{\alpha_{0}}>1 a_{0}>a_{k}$.
Naturally if $\overline{\alpha_{0}}>1$ the continued fraction for α_{0} may have more then one entry in its a cyclic part.

