
CONTINUED FRACTIONS
IRRATIONAL NUMBERS

Irrational numbers
Terminology:
If α = a0 +

1
a1+

1
a2+

. . . then the ai are called partial quotients.

a0 +
1

a1+

1

a2+
. . .

1

an
=
pn

qn

is called the n-th convergent
If we write

α = a0 +
1

a1+

1

a2+
. . .

1

an−1+

1

αn

αn is called a complete quotient.
To develop a number α ∈ R−Q as a continued fraction, we use the following
recursive scheme (we take α > 0)
α = a0 +

1
α1

where a0 = [α] and so α1 > 1

α + n = an +
1

αn+1
where an = [αn] and so αn > 1.

We need to give a meaning to the infinite expression

[a0; a1, a2 . . .]

and to associate it with α.
Suppose we take this development of an irrational and truncate it so

pn

qn
= [a0; a1, . . . , an]

and

α = [a0; a1 . . . anαn+1]

α−
pn

qn
=

αn+1pn + pn−1

αn+1qn + qn−1

−
pn

qn

=
(−1)n

qn(αn+1qn + qn−1)
→ 0 as n→∞

So every number has a continued fraction expression - finite if rational and
infinite if irrational. It is unique apart from the choice at the end of a finite
continued fraction.
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Further more every continued fraction does converge. We have seen that the
even convergents form a sequence bounded above, and the odd convergents
form a sequence bounded below.

Also pn

qn
− pn−1

qn−1
= (−1)n−1

qnqn−1
→ 0 as n→∞ as qn →∞ as n→∞

Hence there is a 1-1 correspondence between sequences of natural numbers
and irrational numbers. The Cantor diagonal argument is even easier in this
case than with decimals, to prove that the irrationals are uncountable.
List irrationals α1, . . . αn . . .

Let α be the irrational whose continued fraction has its n-th partial quotient
1 more than that of αn, for each n.
We can say a bit more about convergence to α, as follows:
Again writing α = [a0; a1 . . . anαn+1]

|qnα− pm| =
1

αn+1qn + qn−1

Now αn+1qn + qn−1 > an+1qn + qn−1 = qn+1

However αn+1qn + qn−1 < (an+1 + 1)qn + qn−1 = qn+1 + qn < qn+2 so

1

qn+2

< |qnα− pn| <
1

qn+1

1

qn+3

< |qn+1α− pn+1| <
1

qn+2

so |qn+1α− pn+1| < |qnα− pn|
Divide LHS by qn+1 and RHS by qn (qn+1 > qn) to give

∣

∣

∣

∣

∣

α−
pn+1

qn+1

∣

∣

∣

∣

∣

<

∣

∣

∣

∣

∣

α−
pn

qn

∣

∣

∣

∣

∣

So the convergents get successively nearer to α, alternating either side of α.
An aside:
Consider now the set of all real numbers whose first (n+1) partial quotients
are fixed.

α = [a0; . . . an, αn+1] so 1 ≤ αn+1 <∞, 0 <
1

αn+1

≤ 1

Consider αx = [ao; . . . an, x] αy = [a0, . . . an, y]

αx − αy =
xpn + pn−1

xqn + qn−1

−
ypn + pn−1

yqn + qn−1

=
(xpn ++pn−1)(yqn + qn−1)− (ypn + pn−1)(xqn + qn−1)

(xqn + qn−1)(yqn + qn−1)
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=
(x− y)(pnqn−1 − pn−1qn)

(xqn + qn−1)(yqn + qn−1)

=
(x− y)(−1)n−1

(xqn + qn−1)(yqn + qn−1)

so if n is even αx is a decreasing function of x and if n is odd αx is an
increasing function of x.
So with 0 < x ≤ 1, αx occupies an interval, with one end point (included)

[a0; . . . , an, 1] =
pn + qn−1

qn + qn−1

and the other end point (excluded)

[a0; . . . an] =
pn

qn

whose length is

∣

∣

∣

∣

∣

pn

qn
−
pn + pn−1

qn + qn−1

∣

∣

∣

∣

∣

=
1

qn(qn + qn−1)
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