CONTINUED FRACTIONS

IRRATIONAL NUMBERS
Irrational numbers
Terminology:
If $\alpha=a_{0}+\frac{1}{a_{1}+} \frac{1}{a_{2}+} \ldots$ then the a_{i} are called partial quotients.

$$
a_{0}+\frac{1}{a_{1}+} \frac{1}{a_{2}+} \ldots \frac{1}{a_{n}}=\frac{p_{n}}{q_{n}}
$$

is called the n-th convergent
If we write

$$
\alpha=a_{0}+\frac{1}{a_{1}+} \frac{1}{a_{2}+} \cdots \frac{1}{a_{n-1}+} \frac{1}{\alpha_{n}}
$$

α_{n} is called a complete quotient.
To develop a number $\alpha \in R-Q$ as a continued fraction, we use the following recursive scheme (we take $\alpha>0$)
$\alpha=a_{0}+\frac{1}{\alpha_{1}}$ where $a_{0}=[\alpha]$ and so $\alpha_{1}>1$
$\alpha+n=a_{n}+\frac{1}{\alpha_{n+1}}$ where $a_{n}=\left[\alpha_{n}\right]$ and so $\alpha_{n}>1$.
We need to give a meaning to the infinite expression

$$
\left[a_{0} ; a_{1}, a_{2} \ldots\right]
$$

and to associate it with α.
Suppose we take this development of an irrational and truncate it so

$$
\frac{p_{n}}{q_{n}}=\left[a_{0} ; a_{1}, \ldots, a_{n}\right]
$$

and

$$
\begin{gathered}
\alpha=\left[a_{0} ; a_{1} \ldots a_{n} \alpha_{n+1}\right] \\
\alpha-\frac{p_{n}}{q_{n}}=\frac{\alpha_{n+1} p_{n}+p_{n-1}}{\alpha_{n+1} q_{n}+q_{n-1}}-\frac{p_{n}}{q_{n}} \\
= \\
\frac{(-1)^{n}}{q_{n}\left(\alpha_{n+1} q_{n}+q_{n-1}\right)} \rightarrow 0 \text { as } n \rightarrow \infty
\end{gathered}
$$

So every number has a continued fraction expression - finite if rational and infinite if irrational. It is unique apart from the choice at the end of a finite continued fraction.

Further more every continued fraction does converge. We have seen that the even convergents form a sequence bounded above, and the odd convergents form a sequence bounded below.
Also $\frac{p_{n}}{q_{n}}-\frac{p_{n-1}}{q_{n-1}}=\frac{(-1)^{n-1}}{q_{n} q_{n-1}} \rightarrow 0$ as $n \rightarrow \infty$ as $q_{n} \rightarrow \infty$ as $n \rightarrow \infty$
Hence there is a $1-1$ correspondence between sequences of natural numbers and irrational numbers. The Cantor diagonal argument is even easier in this case than with decimals, to prove that the irrationals are uncountable.
List irrationals $\alpha_{1}, \ldots \alpha_{n} \ldots$
Let α be the irrational whose continued fraction has its n-th partial quotient 1 more than that of α_{n}, for each n.
We can say a bit more about convergence to α, as follows:
Again writing $\alpha=\left[a_{0} ; a_{1} \ldots a_{n} \alpha_{n+1}\right]$

$$
\left|q_{n} \alpha-p_{m}\right|=\frac{1}{\alpha_{n+1} q_{n}+q_{n-1}}
$$

Now $\alpha_{n+1} q_{n}+q_{n-1}>a_{n+1} q_{n}+q_{n-1}=q_{n+1}$
However $\alpha_{n+1} q_{n}+q_{n-1}<\left(a_{n+1}+1\right) q_{n}+q_{n-1}=q_{n+1}+q_{n}<q_{n+2}$ so

$$
\begin{gathered}
\frac{1}{q_{n+2}}<\left|q_{n} \alpha-p_{n}\right|<\frac{1}{q_{n+1}} \\
\frac{1}{q_{n+3}}<\left|q_{n+1} \alpha-p_{n+1}\right|<\frac{1}{q_{n+2}}
\end{gathered}
$$

so $\left|q_{n+1} \alpha-p_{n+1}\right|<\left|q_{n} \alpha-p_{n}\right|$
Divide LHS by q_{n+1} and RHS by $q_{n}\left(q_{n+1}>q_{n}\right)$ to give

$$
\left|\alpha-\frac{p_{n+1}}{q_{n+1}}\right|<\left|\alpha-\frac{p_{n}}{q_{n}}\right|
$$

So the convergents get successively nearer to α, alternating either side of α. An aside:
Consider now the set of all real numbers whose first $(n+1)$ partial quotients are fixed.

$$
\alpha=\left[a_{0} ; \ldots a_{n}, \alpha_{n+1}\right] \text { so } 1 \leq \alpha_{n+1}<\infty, 0<\frac{1}{\alpha_{n+1}} \leq 1
$$

Consider $\alpha_{x}=\left[a_{o} ; \ldots a_{n}, x\right] \alpha_{y}=\left[a_{0}, \ldots a_{n}, y\right]$

$$
\begin{aligned}
\alpha_{x}-\alpha_{y} & =\frac{x p_{n}+p_{n-1}}{x q_{n}+q_{n-1}}-\frac{y p_{n}+p_{n-1}}{y q_{n}+q_{n-1}} \\
& =\frac{\left(x p_{n}++p_{n-1}\right)\left(y q_{n}+q_{n-1}\right)-\left(y p_{n}+p_{n-1}\right)\left(x q_{n}+q_{n-1}\right)}{\left(x q_{n}+q_{n-1}\right)\left(y q_{n}+q_{n-1}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{(x-y)\left(p_{n} q_{n-1}-p_{n-1} q_{n}\right)}{\left(x q_{n}+q_{n-1}\right)\left(y q_{n}+q_{n-1}\right)} \\
& =\frac{(x-y)(-1)^{n-1}}{\left(x q_{n}+q_{n-1}\right)\left(y q_{n}+q_{n-1}\right)}
\end{aligned}
$$

so if n is even α_{x} is a decreasing function of x and if n is odd α_{x} is an increasing function of x.
So with $0<x \leq 1, \alpha_{x}$ occupies an interval, with one end point (included)

$$
\left[a_{0} ; \ldots, a_{n}, 1\right]=\frac{p_{n}+q_{n-1}}{q_{n}+q_{n-1}}
$$

and the other end point (excluded)

$$
\left[a_{0} ; \ldots a_{n}\right]=\frac{p_{n}}{q_{n}}
$$

whose length is

$$
\left|\frac{p_{n}}{q_{n}}-\frac{p_{n}+p_{n-1}}{q_{n}+q_{n-1}}\right|=\frac{1}{q_{n}\left(q_{n}+q_{n-1}\right)}
$$

