
CONTINUED FRACTIONS
INVERSE PERIODS AND A THEOREM OF GALOIS

Let α0 = [a0, . . . , ak−1] be a purely periodic continued fraction of period k.
The αn are also reduced, and satisfy

α0 = a0 +
1

α1

α1 = a1 +
1

α2

. . . αk−1 = ak−1 +
1

α0

using periodicity.
Reversing the sequence, rearranging and taking conjugates gives

− 1

α0

= ak−1 − αk−1, −
1

αk−1

= ak−2 − αk−1 . . . −
1

α1

= a0 − α0

Write − 1
αn

= βn. Then βn > 1 and

β0 = ak−1 +
1

βk−1

βk−1 = ak−1 +
1

βk−1

, . . . , β1 = a0 +
1

β0

From which we deduce

|beta0

(

= − 1

α0

)

= [ak−1, ak−2, . . . , a1, a0]

We can also investigate the complete quotients, developing formulae of use
later.
Let α0 =

√
D+P0

Q0
where Q0|D − P 2

0

then αn =
√
D+pn

Qn
and Qn|D − P 2

n so
√
D+Pn

Qn
= an + Qn+1√

D+Pn+1

Clearing of fractions and equating rational and irrational parts gives

D + PnPn+1 = anQnPn+1 + QnQn+1

Pn + Pn+1 = anQn

Multiplying the second equation by Pn+1 and subtracting gives

D − P 2
n+1 = QnQn+1

which we have met before.
Now αn =

√
D+Pn

Qn
so αn = −

√
D+Pn

Qn

Thus

βn = − 1

αn
=

Qn√
D − Pn

=
Qn(

√
D + Pn)

D − P 2
n

=

√
D − Pn

Qn−1

1



This needs interpreting for n = 0.
However

β0 = βk by periodicity =

√
D + Pk

Qk−1

=

√
D + P0

Qk−1

This relates the complete quotients of α0 and − 1
α0

Finally we deduce
Theorem (Serret)
Two conjugate quadratic irrationals have inverse periods (not necessarily
reduced).
Proof
Let α0 = [a0, . . . ak−1ak, . . . am+k−1]

α0 =
pk−1αk + pk−2

qk−1αk + qk−1

,

αk purely periodic.
so − 1

αk
= [am+k−1, . . . ak]. However

α0 =
pk−1αk + pk−1

qk−1αk + qk−2

=
pk−2

(

− 1
αk

)

+ (−pk−1)

qk−2

(

− 1
αk

)

+ (qk−1)

So α0 and − 1
αk

are equivalent and so their continued fractions agree from
some point on. Thus α0 has the reverse period of α0

Examples

14−
√

37

3
= [2, 1, 1, 1, 3, 2]

14 +
√

37

3
= [6, 1, 2, 3] = [6; 1, 2, 3, 1]

If α0 and α0 are equivalent then they agree from some point onward. This
means that the have the same period. They also have inverse periods, but
this does not mean that the period is symmetric, because of the shift noted
above.
Examples
α0 =

√
7+3
2

α0 =
√

7−3
−2

2



α0 k 0 1 2 3 4 5
Pk 3 12211
Qk 2 3 1 3 2 3
ak 3 1 4 1 1

α0 = [3; 1, 4, 1, 1]

α0 − α0 = 3 so α0 and α0 are equivalent.
(

α0 = 1.α0+3
0.α0+1

)

α0 k 0 1 2 3 4 5 6
Pk −3 3 2 1 1 2 2
Qk −2 1 3 2 3 1 3
ak 0 5 1 1 1 4 1

α0 = [0, 5, 1, 1, 1, 4]

= [0; 5, 1, 1, 1, 4, 1] - reverse period of α

= [o; 5, 1, 1, 1, 4, 1, 1] - same period as α

because this shift starts somewhere, the period can be slit into 2 symmetric
parts. In this case 1 and 1,4,1.
Square roots of rationals
Let d ∈ Q, not the square of a rational, and d > 1. Then −

√
d < −1 and

the continued function for
√
D has one term before the period.√

d = [a0; a1, . . . , ak] so 1√
d−a0

= [a1, . . . , ak] = α0

− 1
α0

=
√
d + a0 = [ak, . . . , a1]

but
√
d + a0 = [2a0, a1, . . . , ak]

Thus by uniqueness

ak = 2a0, ak−1 = a1, . . .

so
√
d = [a0; a1, a2, . . . , a2, a1, 2a0]

(If k = 1 the symmetric part is empty)
Conversely we argue as follows
Suppose α0 = [ao; a1, a2, . . . , a2, a1, 2a0]. 2a0 6= 0 so α0 > 1

1
α
−
−a0

= [a1, a2, . . . , a2, a1, 2a0] and so a0−α0 = [2a0, a1, a2, . . . , a1] so −α0 =

[a0, a1, a2, . . . , a2, a1, 2a0]
Thus α0 = −α0 and so α0 is the square root of a rational number.
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